
Advanced resources in CUDA

Manuel Ujaldón
Full Professor @ University of Malaga (Spain)
Former CUDA Fellow @ NVIDIA Corporation (USA)

PRACE School
Barcelona Supercomputing Center. April, 16-20th, 2018

Contents [60 slides]

1. The read-only data cache (Kepler+) [4 slides]
2. Dynamic parallelism (Kepler+). [17]

1. Data-dependent execution. [2]
2. Recursive parallel algorithms. [4]
3. Library calls from kernels. [3]
4. Simplify the CPU/GPU division. [2]

3. Hyper-Q (Kepler+). [6]
4. GPU Boost (Kepler+). [6]
5. Unified memory. [19]

1. Programming examples. [9]
2. Summary. [1]
3. Roadmap. [1]

6. Independent thread scheduling. [7]

2

1. The read-only data cache (Kepler+)

Differences in memory hierarchy:
Fermi vs. Kepler

4

Motivation for using the new data cache

Additional 48 Kbytes to expand L1 cache size.
Highest miss bandwidth.
Use the texture cache, but it is transparent to the

programmer, and eliminates texture setup.
Allows a global address to be fetched and cached, using a

pipeline different from that of L1/shared.
Flexible (does not require aligned accesses).
Managed automatically by compiler.

5

Annotate eligible kernel pointers with "const __restrict__"
Compiler will automatically map loads to use read-only

data cache path through texture memory.

__global__ void saxpy(float x, float y,
 const float * __restrict__ input,
 float * output)
{
 size_t offset = threadIdx.x +
 (blockIdx.x * blockDim.x);

 // Compiler will automatically use cache for "input"
 output[offset] = (input[offset] * x) + y;
}

How to use the new data cache

6

A comparison with CUDA constant memory

7

To compare Constant memory Read-only data cache

Availability

Size

Hardware
implementation

Access

Best feature

Worst feature

Best scenario

From CUDA Compute Capability 1.0
From CCC 3.5

(available in CCC 1.0 using
explicitly texture memory)

64 Kbytes 48 Kbytes

A global memory partition
(DRAM)

Texture cache expanding L1
(SRAM)

Through an 8 Kbytes cache
on each multiprocessor

Separated path in
the graphics pipeline

Very low latency High data bandwidth

Lower bandwidth Higher latency

Access with the same coefficient
(do not involve threadIdx)

to a small dataset

When the kernel is memory-bound
even with a shared memory bandwidth

already saturated

2. Dynamic parallelism (Kepler+)

The ability to launch new grids from the GPU:
Dynamically: Based on run-time data.
Simultaneously: From multiple threads at once.
Independently: Each thread can launch a different grid.

What is dynamic parallelism?

9

Fermi: Only CPU
can generate GPU work.

Kepler: GPU can
generate work for itself.

CPU GPU CPU GPU

The way we did things in the pre-Kepler era:
The GPU was a slave for the CPU

High data bandwidth for communications:
External: More than 10 GB/s (PCI-express 3).
Internal: More than 100 GB/s (GDDR5 video memory and 384 bits,

which is like a six channel CPU architecture).

10

Operation 1 Operation 2 Operation 3

Init

Alloc

Function Lib Lib Function Function

CPU

GPU

11

CPU GPU CPU GPU

The pre-Kepler GPU is a co-processor

Now programs run faster and

The way we do things in Kepler:
GPUs launch their own kernels

The Kepler GPU is autonomous:
Dynamic parallelism

are expressed in a more natural way.

Assign resources dynamically according to real-time
demand, making easier the computation of irregular
problems on GPU.

It broadens the application scope where it can be useful.

Example 1: Dynamic work generation

12

Coarse grid Fine grid Dynamic grid

Higher performance,
lower accuracy

Target performance
where accuracy is required

Lower performance,
higher accuracy

Example 2: Deploying
parallelism based on level of detail

13

CUDA until 2012:
• The CPU launches
kernels regularly.
• All pixels are treated
the same.

CUDA on Kepler:
• The GPU launches a
different number of
kernels/blocks for each
computational region.

Computational power
allocated to regions

of interest

Warnings when using dynamic parallelism

It is a much more powerful mechanism than it suggests
from its simplicity in the code. However...

What we write within a CUDA kernel is replicated for all
threads. Therefore, a kernel call will produce millions of
launches if it is not used within an IF statement (which, for
example, limits the launch to a single one from thread 0).

If a father block launches sons, can they use the shared
memory of their father?

No. It would be easy to implement in hardware, but very complex
for the programmer to guarantee the code correctness (avoid race
conditions).

14

2. 1. Data-dependent execution

The simplest possible parallel program:
Loops are parallelizable.
Workload is known at compile-time.

Data-dependent parallelism

16

for (i=0; i<N; i++)
 for (j=0; j<ElementsOnRow[i]; j++)
 convolution (i, j);

for (i=0; i<N; i++)
 for (j=0; j<M; j++)
 convolution (i, j);

Poor solution #1: Oversubscription.
Poor solution #2: Serialization.

max(ElementsOnRow[i])

N

The simplest impossible parallel program:
Workload is unknown at compile-time.
The challenge is data partitioning.

M

N

The CUDA program for Kepler:

Now possible with dynamic parallelism:
The two loops can be executed in parallel

17

__global__ void convolution(int ElementsOnRow[])
{
 for (j=0; j<ElementsOnRow[blockIdx]; j++) // Each block launches
 kernel <<< ... >>> (blockIdx, j) // ElementsOnRow[] kernels
}

convolution <<< N, 1 >>> (ElementsOnRow); // Launch N blocks
 // of 1 thread from the GPU (rows start in parallel)

N
 b

lo
ck

s

ElementsOnRow[blockIdx] kernel calls
Swapping these two parameters
(and replacing blockIdx by
threadIdx in the previous loop),
the program runs faster, but
it does not work for more than
1024 elements (max. block size)

2. 2. Recursive parallel algorithms

Recursive parallel algorithms prior to Kepler

Early CUDA programming model did not support recursion
at all.

CUDA started to support recursive functions in version 3.1,
but they can easily crash if the size of the arguments is large.

A user-defined stack in global memory can be employed
instead, but at the cost of a significant performance penalty.

An efficient solution is possible using dynamic parallelism.

19

A simple example of parallel recursion:
Quicksort

Typical divide-and-conquer algorithm hard to do on Fermi:
Entire data-dependent execution.
Recursively partition-and-sort data.

20

CUDA code for quicksort

21

Low-performance version High-performance version
global void qsort(int *data, int l, int r)
{

 int pivot = data[0];
 int *lptr = data+l, *rptr = data+r;
 // Partition data around pivot value

 partition(data, l, r, lptr, rptr, pivot);

 // Launch next stage recursively
 int rx = rptr-data; lx = lptr-data;

 if (l < rx)
 qsort<<<...>>>(data,l,rx);
 if (r > lx)

 qsort<<<...>>>(data,lx,r);
}

global void qsort(int *data, int l, int r)
{

 int pivot = data[0];
 int *lptr = data+l, *rptr = data+r;
 // Partition data around pivot value

 partition(data, l, r, lptr, rptr, pivot);

 // Use streams this time for the recursion
 cudaStream_t s1, s2;
 cudaStreamCreateWithFlags(&s1, ...);

 cudaStreamCreateWithFlags(&s2, ...);
 int rx = rptr-data; lx = lptr-data;

 if (l < rx)
 qsort<<<...,0,s1>>>(data,l,rx);
 if (r > lx)

 qsort<<<...,0,s2>>>(data,lx,r);
}

left- and right-hand sorts are serialized Use separate streams to achieve concurrency

Experimental results for Quicksort

The lines of code were reduced in half.
Performance was improved by 2x.

22

2. 3. Library calls from kernels

Programming model basics:
CUDA run-time syntax & semantics

24

__device__ float buf[1024];
__global__ void dynamic(float *data)
{
 int tid = threadIdx.x;
 if (tid % 2)
 buf[tid/2] = data[tid]+data[tid+1];
 __syncthreads();

 if (tid == 0) {
 launchkernel<<<128,256>>>(buf);
 cudaDeviceSynchronize();
 }
 __syncthreads();

 if (tid == 0) {
 cudaMemCpyAsync(data, buf, 1024);
 cudaDeviceSynchronize();
 }
}

This launch is per-thread
CUDA 5.0+: Wait here until all launches
and calls made before are completed.
Idle threads wait for the others here

CUDA 5.0+: Only async. launches
are allowed on data gathering

An example of simple library calls
using cuBLAS (available from CUDA 5.0 on)

25

__global__ void libraryCall(float *a,
 float *b,
 float *c)
{
 // All threads generate data
 createData(a, b);
 __syncthreads();

 // The first thread calls library
 if (threadIdx.x == 0) {
 cublasDgemm(a, b, c);
 cudaDeviceSynchronize();
 }

 // All threads wait for results
 __syncthreads();

 consumeData(c);
}

CPU launches
kernel

Per-block
data

generation

Call of 3rd
party library

3rd party
library

executes

Parallel
use

of result

The father-child relationship in CUDA blocks

26

__global__ void libraryCall(float *a,
 float *b,
 float *c)
{
 // All threads generate data
 createData(a, b);
 __syncthreads();

 // The first thread calls library
 if (threadIdx.x == 0) {
 cublasDgemm(a, b, c);
 cudaDeviceSynchronize();
 }

 // All threads wait for results
 __syncthreads();

 consumeData(c);
}

Per-thread execution

Single call to external library function:
- The library will generate the child-block.
- But we synchronize in the father-block.

Synchronize only launching threads:
- Otherwise, race conditions may occur
between father and child.

All threads must wait before parallel data use

Father and child are different blocks, so:
- Local and shared memory from father
cannot be used in child.
- Requires to copy values into global memory
to be passed as kernel arguments to child.

2. 4. Simplify the CPU/GPU division

Version for Fermi Version for Kepler
 CPU side GPU side
dgetrf(N, N)} {

 for j=1 to N {
 for i=1 to 64 {
 idamax<<<...>>> idamax();

 memcpy
 dswap<<<...>>> dswap();

 memcpy
 dscal<<<...>>> dscal();
 dger<<<...>>> dger();

 }
 memcpy

 dlaswap<<<...>>> dlaswap();
 dtrsm<<<...>>> dtrsm();
 dgemm<<<...>>> dgemm();

 }
}

 CPU side GPU side
dgetrf(N, N) {

 dgetrf<<<...>>> dgetrf(N, N) {
 for j=1 to N {
 for i=1 to 64 {

 idamax<<<...>>>
 dswap<<<...>>>

 dscal<<<...>>>
 dger<<<...>>>
 }

 dlaswap<<<...>>>
 dtrsm<<<...>>>

 dgemm<<<...>>>
 }
 }

 synchronize();
}

CPU fully occupied controlling launches Batched LU, release CPU for other work

A direct solver in matrix algebra:
LU decomposition

28

Extended gains when our task involves
thousands of LUs on different matrices

CPU-controlled work batching:
Serialize LU calls, or
Face parallel P-threads limitations (10s).

29

dgetf2 dgetf2 dgetf2

CPU control thread

CPU control thread

CPU control thread

dswap dswap dswap

CPU control thread

dtrsm dtrsm dtrsm

CPU control thread

dgemm dgemm dgemm

Batching via dynamic parallelism:

Move top loops to GPU and launch 1000s
of batches in parallel from GPU threads.

CPU control thread

CPU control thread

dgetf2

dswap

dtrsm

dgemm

GPU control
thread

dgetf2

dswap

dtrsm

dgemm

GPU control
thread

dgetf2

dswap

dtrsm

dgemm

GPU control
thread

3. Hyper-Q (Kepler+)

In Fermi, several CPU processes can send thread blocks to
the same GPU, but the concurrent execution of kernels was
severely limited by hardware constraints.

In Kepler, we can execute simultaneously up to 32 kernels
launched from different:

 MPI processes, CPU threads (POSIX threads) or CUDA streams.

This increments the % of temporal occupancy on the GPU.

Hyper-Q

31

FERMI
1 MPI Task at a Time

KEPLER
32 Simultaneous MPI Tasks

An example:
3 streams, each composed of 3 kernels

32

__global__ kernel_A(pars) {body} // Same for B...Z
cudaStream_t stream_1, stream_2, stream_3;
...
cudaStreamCreatewithFlags(&stream_1, ...);
cudaStreamCreatewithFlags(&stream_2, ...);
cudaStreamCreatewithFlags(&stream_3, ...);
...
kernel_A <<< dimgridA, dimblockA, 0, stream_1 >>> (pars);
kernel_B <<< dimgridB, dimblockB, 0, stream_1 >>> (pars);
kernel_C <<< dimgridC, dimblockC, 0, stream_1 >>> (pars);
...
kernel_P <<< dimgridP, dimblockP, 0, stream_2 >>> (pars);
kernel_Q <<< dimgridQ, dimblockQ, 0, stream_2 >>> (pars);
kernel_R <<< dimgridR, dimblockR, 0, stream_2 >>> (pars);
...
kernel_X <<< dimgridX, dimblockX, 0, stream_3 >>> (pars);
kernel_Y <<< dimgridY, dimblockY, 0, stream_3 >>> (pars);
kernel_Z <<< dimgridZ, dimblockZ, 0, stream_3 >>> (pars);

st
re

a
m

 1

stream_1

kernel_A

kernel_B

kernel_C

stream_2

kernel_P

kernel_Q

kernel_R

stream_3

kernel_X

kernel_Y

kernel_Z

st
re

a
m

 2
st

re
a
m

 3

Work Distributor
Tracks blocks issued from grids

16 active grids

Stream Queue
(ordered queues of grids)

Kernel C

Kernel B

Kernel A

Kernel Z

Kernel Y

Kernel X

Kernel R

Kernel Q

Kernel P

Stream 1 Stream 2 Stream 3

Grid management unit: Fermi vs. Kepler

33

Work Distributor
Actively dispatching grids

32 active grids

Stream Queue
C

B

A

R

Q

P

Z

Y

X

Grid Management Unit
Pending & Suspended Grids

1000s of pending grids

SMX SMX SMX SMXSM SM SM SM

Fermi Kepler GK110

CU
D

A
G

en
er

at
ed

 W
or

k

Single hardware queue
multiplexing streams

Parallel hardware streams

Allows suspending of grids

The relation between
software and hardware queues

34

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Chances for overlapping: Only at stream edges

A--B--C P--Q--R X--Y--Z
Up to 16 grids

can run at once
on GPU hardware

But CUDA streams multiplex into a single queue
Fermi:

The relation between
software and hardware queues

35

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Chances for overlapping: Only at stream edges

A--B--C P--Q--R X--Y--Z
Up to 16 grids

can run at once
on GPU hardware

But CUDA streams multiplex into a single queue
Fermi:

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3Concurrency at full-stream level

P--Q--R
Up to 32 grids

can run at once
on GPU hardware

No inter-stream dependenciesKepler:

A--B--C

X--Y--Z

...mapped on GPU 36

E

F

D

C

B

A

CPU processes...

Without Hyper-Q: Multiprocess by temporal division

A B C D E F

100

50

%
 G

PU
 u

til
iz

at
io

n

0
Time

Time saved
0

A

A
A

B

B B

C

C
C

D

D

D

E

E

E

F

F

F

With Hyper-Q: Symultaneous multiprocess
100

50

%
 G

PU
 u

til
iz

at
io

n

0

4. GPU Boost (Kepler+)

What is the main contribution?

Allows to speed-up the GPU clock up to 17% if the power
required by an application is low.

The base clock will be restored if we exceed 235 W.
We can set up a persistent mode which keep values

permanently, or another one for a single run.

38

Power Headroom
Performance

Highest Boost ClockBase Clock

Maximizes Graphics Clocks within
the specified power envelope

745 MHz 810 MHz 875 MHz

Every application has a different behaviour
regarding power consumption

Here we see the average power (watts) on a Tesla K20X
for a set of popular applications within the HPC field:

39

0

40

80

120

160

AMBER ANSYS Black ScholesChroma GROMACS GTC LAMMPS LSMS NAMD Nbody QMCPACK RTM SPECFEM3D

B
oa

rd
 P

ow
er

 (W
at

ts
)

Those applications which are less power
hungry can benefit from a higher clock rate

For the Tesla K40 case, 3 clocks are defined, 8.7% apart.

40

Base
clock

Workload #1
Worst case
Reference App

235W

Boosted
clock #1

Workload #2
 E.g. AMBER

235W

Boosted
clock #2

Workload #3
E.g. ANSYS Fluent

235W

875 MHz

810 MHz

745 MHz

Up to 40% higher
performance relative
to Tesla K20X.

And not only GFLOPS are
improved, but also effective
memory bandwidth.

LEo
Nota adhesiva
17% in frequency means 17% better performance for EVERy application!º

GPU Boost compared to other approaches

It is better a stationary state for the frequency to avoid
thermal stress and improve reliability.

41

GPU
clock

Automatic clock switching

Boost Clock # 1

Boost Clock # 2

Tesla K40

Deterministic Clocks

Base Clock # 1

Other vendors

Other vendors Tesla K40

Default

Preset options

Boost interface

Target duration for boosts

Boost Base

Lock to base clock 3 levels: Base, Boost1 o Boost2

Control panel Shell command: nv-smi

Roughly 50% of run-time 100% of workload run time

LEo
Nota adhesiva
chips only age with thermal streess. That's why stand by is used in Tvs

GPU Boost - List of commands

42

Command Effect

nvidia-smi -q -d SUPPORTED_CLOCKS

nvidia-smi -ac <MEM clock,
Graphics clock>

nvidia-smi -pm 1

nvidia-smi -pm 0

nvidia-smi -q -d CLOCK

nvidia-smi -rac

nvidia-smi -acp 0

View the clocks supported by our GPU

Set one of the supported clocks

Enables persistent mode: The clock settings are
preserved after restarting the system or driver

Enables non-persistent mode: Clock settings revert
to base clocks after restarting the system or driver

Query the clock in use

Reset clocks back to the base clock

Allow non-root users to change clock rates

Example: Query the clock in use

nvidia-smi -q -d CLOCK —id=0000:86:00.0

43

5. Unified memory (Maxwell+)

Now

45

GPU CPU

DDR42.5D memory

NVLINK
80 GB/s

DDR4
100 GB/s

Memory stacked
in 4 layers: 1 TB/s

In few years:
All communications internal to the 3D chip

46

GPU
CPU

Boundary
of the
silicon
die

SRAM

3D-DRAM

LEo
Nota adhesiva
Instead of cudaMalloc or Malloc we will use now cudaMallocManage

The new API: Accustom the programmer
NOW to see the FUTURE memory

47

GPUCPU

DDR3 GDDR5

Main memory Video memory

PCI-express

Maxwell
 GPUCPU

DDR3 GDDR5Unified
memory

The old hardware
and software model:
Different memories,
performances
and address spaces.

The new API:
Same memory,
a single global
address space.

Performance sensitive
to data proximity.

CUDA 2007-2014 CUDA 2015 on

LEo
Nota adhesiva
Nowadays is a NUMA, non uniform memory access. It would depend on the distance to the data.

System requirements

48

Required Limitations

CUDA version

GPU

Operating System

Windows

Linux

Linux on ARM

Mac OSX

Al least 6.0

Kepler (GK10x+) or
Maxwell (GM10x+)

Limited performance in
CCC 3.0 and CCC 3.5

64 bits

7 or 8 WDDM & TCC no XP/Vista

Kernel 2.6.18+
All CUDA-supported distros,

without ARM in earlier versions

ARM64

Supported in CUDA 7Supported in CUDA 7

Unified memory contributions

Simpler programming and memory model:
Single pointer to data, accessible anywhere.
Eliminate need for cudaMemcpy().
Greatly simplifies code porting.

Performance through data locality:
Migrate data to accessing processor.
Guarantee global coherency.
Still allows cudaMemcpyAsync() hand tuning.

49

CUDA memory types

50

Zero-Copy
(pinned memory)

Unified Virtual
Addressing Unified Memory

CUDA call

Allocation fixed in

Local access for

PCI-e access for

Other features

Coherency

Full support in

cudaMallocHost(&A, 4); cudaMalloc(&A, 4); cudaMallocManaged(&A, 4);

Main memory (DDR3) Video memory (GDDR5) Both

CPU Home GPU CPU and home GPU

All GPUs Other GPUs Other GPUs

Avoid swapping to disk No CPU access On access CPU/GPU migration

At all times Between GPUs Only at launch & sync.

CUDA 2.2 CUDA 1.0 CUDA 6.0

Additions to the CUDA API

New call: cudaMallocManaged(pointer,size,flag)
Drop-in replacement for cudaMalloc(pointer,size).
The flag indicates who shares the pointer with the device:
cudaMemAttachHost: Only the CPU.
cudaMemAttachGlobal: Any other GPU too.

All operations valid on device mem. are also ok on managed mem.

New keyword: __managed__
Global variable annotation combines with __device__.
Declares global-scope migratable device variable.
Symbol accessible from both GPU and CPU code.

New call: cudaStreamAttachMemAsync()
Manages concurrently in multi-threaded CPU applications.

51

Technical details

The maximum amount of unified memory that can be
allocated is the smallest of the memories available on GPUs.

Memory pages from unified allocations touched by CPU are
required to migrate back to GPU before any kernel launch.

The CPU cannot access any unified memory as long as GPU
is executing, that is, a cudaDeviceSynchronize() call is
required for the CPU to use unified memory.

The GPU has exclusive access to unified memory when
any kernel is executed on the GPU, and this holds even if the
kernel does not touch the unified memory (see the first
example in two slides).

52

5.1. Programming examples

Example 1:
Access constraints (1)

54

__device__ __managed__ int x, y = 2; // Unified memory

__global__ void mykernel() // GPU territory
{
 x = 10;
}

int main() // CPU territory
{
 mykernel <<<1,1>>> ();

 y = 20; // ERROR: CPU access concurrent with GPU
 return 0;
}

Example 1:
Access constraints (2)

55

__device__ __managed__ int x, y = 2; // Unified memory

__global__ void mykernel() // GPU territory
{
 x = 10;
}

int main() // CPU territory
{
 mykernel <<<1,1>>> ();
 cudaDeviceSynchronize(); // Problem fixed!
 // Now the GPU is idle, so access to “y” is OK
 y = 20;
 return 0;
}

56

CUDA code
WITHOUT unified memory

CUDA code (from 6.0 on)
WITH unified memory

__global__ void incr (float *a, float b, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < N)
 a[idx] = a[idx] + b;
}
void main()
{
 unsigned int numBytes = N*sizeof(float);
 float* h_A = (float*) malloc(numBytes);
 float* d_A; cudaMalloc(&d_A, numBytes);
 cudaMemcpy(d_A,h_A,numBytes,cudaMemcpyHostToDevice);
 incr<<<N/blocksize,blocksize>>>(d_A,b,N);
 cudaMemcpy(h_A,d_A,numBytes,cudaMemcpyDeviceToHost);
 cudaFree(d_A);
 free(h_A);
}

__global__ void incr (float *a, float b, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < N)
 a[idx] = a[idx] + b;
}
void main()
{

 float* m_A; cudaMallocManaged(&m_A, numBytes);

 incr<<<N/blocksize,blocksize>>>(m_A,b,N);
 cudaDeviceSynchronize();

 cudaFree(m_A);
}

Example 2: Increment a value “b”
to all the N elements of an array “a”

Example 3: Sorting elements from a file.
Now comparing to CPUs using C

57

CPU code in C GPU code in CUDA (v. 6.0 on)

void sortfile (FILE *fp, int N)
{
 char *data;
 data = (char *) malloc(N);

 fread(data, 1, N, fp);

 qsort(data, N, 1, compare);

 use_data(data);

 free(data);
}

void sortfile (FILE *fp, int N)
{
 char *data;
 cudaMallocManaged(&data, N);

 fread(data, 1, N, fp);

 qsort<<<...>>>(data, N, 1, compare);
 cudaDeviceSynchronize();
 use_data(data);

 cudaFree(data);
}

Example 4: Cloning dynamic data structures
WITHOUT unified memory

A “deep copy” is required:
We must copy the structure

and everything that it points to.
This is why C++ invented the
copy constructor.

CPU and GPU cannot share a
copy of the data (coherency).
This prevents memcpy style
comparisons, checksumming
and other validations.

58

dataElem

prop1

prop2

*text “Hello, world”

CPU memory

dataElem

prop1

prop2

*text “Hello, world”

GPU memory

struct dataElem {
 int prop1;

 int prop2;
 char *text;
}

Two addresses
and two copies
of the data

Cloning dynamic data structures
WITHOUT unified memory (2)

59

dataElem

prop1

prop2

*text “Hello, world”

CPU memory

dataElem

prop1

prop2

*text “Hello, world”

GPU memory

void launch(dataElem *elem) {
 dataElem *g_elem;
 char *g_text;

 int textlen = strlen(elem->text);

 // Allocate storage for struct and text
 cudaMalloc(&g_elem, sizeof(dataElem));

 cudaMalloc(&g_text, textlen);

 // Copy up each piece separately, including
new “text” pointer value
 cudaMemcpy(g_elem, elem, sizeof(dataElem));

 cudaMemcpy(g_text, elem->text, textlen);
 cudaMemcpy(&(g_elem->text), &g_text,

 sizeof(g_text));

 // Finally we can launch our kernel, but

 // CPU and GPU use different copies of “elem”
 kernel<<< ... >>>(g_elem);

}

Two addresses
and two copies
of the data

Cloning dynamic data structures
WITH unified memory

What remains the same:
Data movement.
GPU accesses a local copy of text.

What has changed:
Programmer sees a single pointer.
CPU and GPU both reference the

same object.
There is coherence.

To pass-by-reference vs. pass-
by-value you need to use C++.

60

void launch(dataElem *elem) {
 kernel<<< ... >>>(elem);
}

dataElem

prop1

prop2

*text “Hello, world”

GPU memory

Unified memory

CPU memory

Example 5: Linked lists

Almost impossible to manage in the original CUDA API.
The best you can do is use pinned memory:

Pointers are global: Just as unified memory pointers.
Performance is low: GPU suffers from PCI-e bandwidth.
GPU latency is very high, which is critical for linked lists because of

the intrinsic pointer chasing. 61

key

value

next

key

value

next

key

value

next

key

value

next

key

value

next

key

value

next

All accesses via PCI-express bus

CPU memory

GPU memory

Linked lists with unified memory

Can pass list elements between CPU & GPU.
No need to move data back and forth between CPU and GPU.

Can insert and delete elements from CPU or GPU.
But program must still ensure no race conditions (data is coherent

between CPU & GPU at kernel launch only). 62

key

value

next

key

value

next

key

value

next

CPU memory

GPU memory

Unified memory: Summary

Drop-in replacement for cudaMalloc() using
cudaMallocManaged().

cudaMemcpy() now optional.

Greatly simplifies code porting.
Less host-side memory management.

Enables shared data structures between CPU & GPU
Single pointer to data = no change to data structures.

Powerful for high-level languages like C++.

63

Unified memory evolution:
Contributions on every abstraction level

64

Abstraction
level

Consolidated
 in 2014

Performed
during 2015-16

Recent upgrades
(2017-2018)

High

Medium

Low

Single pointer to data.
No cudaMemcpy()

is required

Prefetching mechanisms
to anticipate data arrival

in copies
System allocator unified

Coherence @
launch & synchronize Migration hints Stack memory unified

Shared C/C++ data
structures

Additional
OS support

Hardware-accelerated
coherence

6. Independent thread scheduling

A new model for
synchronization and communication

In CUDA 9, we can define synchronization at 3 levels:
Intra-warp: Flexible groups within a warp.

Lauch with a typical mykernel<<< , >>> or using cudaLaunchKernel();

Inter-blocks: Multiple blocks within the grid.
Launch using cudaLaunchCooperativeKernel();

Inter-GPUs: Multiple GPUs within the system.
Launch using cudaLaunchCooperativeKernelMultiDevice();

66

Intra-warp: Cooperative groups

Allows to define, synchronize and partition groups of
cooperative threads within warps.

Programs can be executed from Kepler on, but fast
hardware infrastructure is included in Volta:

Program familiar algorithms and data structures in a natural way.
Flexible thread grouping and synchronization

Scalable execution (from a few threads to all running thrs.).
CUDA 9 provides a fully explicit synchronization model.

We must adapt legacy code for new execution model, removing
implicit warp synchronous programming on all architectures. Example:

CUDA 9 deprecates non-sync __shfl(), __ballot(), __any(), __all()
as transition to new __shfl_sync(), __ballot_sync(), __any_sync(), ...

67

Cooperative groups:
Flexible, Explicit Synchronization

Thread groups are explicit objects in your program:
thread_group block = this_thread_block();

You can synchronize threads in a group:
block.sync();

Create new groups by partitioning existing groups:
thread_group tile32 = tiled_partition(block, 32);

thread_group tile4 = tiled_partition(tile32, 4);

Partitioned groups can also synchronize
tile4.sync();

68
Note: calls in green are part of the cooperative_groups::namespace

69

Per-Block Per-Warp

g = my_thread_block();
reduce(g, ptr, myVal);

g = tiled_partition<32>(my_thread_block());
reduce(g, ptr, myVal);

Example 1: Parallel sum reduction.
Composable, robust and efficient

__device__ int reduce(thread_group g, int *x, int val) {
 int lane = g.thread_rank();
 for (int i = g.size()/2; i > 0; i /= 2) {
 x[lane] = val; g.sync();
 val += x[lane + i]; g.sync();
 }
 return val;
}

Example: Particle simulation

Without using cooperative groups:

70

// Threads update particles in parallel (pos, vel)
integrate<<<blocks, threads, 0, s>>>(particles);

// Note: implicit sync between kernel launches

// Build a regular grid spatial data structure to
// accelerate finding collisions between particles
collide<<<blocks, threads, 0, s>>>(particles);

Note that after integration and construction of the regular grid data structure,
the ordering of particles in memory and mapping to threads changes,
necessitating a synchronization between phases and multiple kernel launches.
Using cooperative groups, all required synchronizations can be performed
within a single kernel launch.

Whole-grid cooperation

Particle simulation update in a single kernel:

Launch using cudaLaunchCooperativeKernel();
71

__global__ void particleSim(Particle *p, int N) {

 grid_group g = this_grid();

 for (i = g.thread_rank(); i < N; i += g.size())
 integrate(p[i]);

 g.sync(); // Sync whole grid!

 for (i = g.thread_rank(); i < N; i += g.size())
 collide(p[i], p, N);
}

Multi-GPU cooperation

Large-scale multi-GPU simulation in a single kernel:

Launch using cudaLaunchCooperativeKernelMultiDevice();
72

__global__ void particleSim(Particle *p, int N) {

 multi_grid_group g = this_multi_grid();

 for (i = g.thread_rank(); i < N; i += g.size())
 integrate(p[i]);

 g.sync(); // Sync all GPUs!

 for (i = g.thread_rank(); i < N; i += g.size())
 collide(p[i], p, N);
}

