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Abstract A spacelike surface S immersed in S
4
1 is marginally trapped if its mean

curvature vector is everywhere lightlike.On any oriented spacelike surface S immersed
in S

4
1 we show that a choice of orientation of the normal bundle ν(S) determines a

smooth map G : S → S
3 which we call the null Gauss map of S. If S is marginally

trapped we show that G is a conformal immersion away from the zeros of certain
quadratic Hopf-differential of S and so the surface G(S) is uniquely determined up to
conformal transformations of S3 by two invariants: the normal Hopf differential κ and
the schwartzian derivative s. These invariants plus an additional quadratic differential
δ are related by a differential equation and determine the geometry of S up to ambient
isometries of S41. This allows us to obtain a characterization of marginally trapped
surfaces S whose null Gauss image is a constrainedWillmore surface in S3 in the sense
of Bohle et al. (Calc Var Partial Differ Equ 32:263–277, 2008). As an application of
these results we construct and study integrable non-trivial one-parameter deformations
of marginally trapped surfaces with non-zero parallel mean curvature vector and those
with flat normal bundle.
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1 Introduction

A spacelike surface immersed in a 4-dimensional Lorentz manifold is called mar-
ginally trapped if its mean curvature vector is everywhere null or lightlike. The notion
of marginally trapped surfaces was introduced by Penrose and plays a key role in the
singularity theory of Einstein’s equations (Chen 2009). The marginally trapped equa-

tion 〈→
H ,

→
H〉 = 0 is interpreted in relativity theory as the condition describing the event

horizon of a black hole (Chen 2009). From a differential geometric point of view mar-
ginally trapped surfaces are considered as natural generalizations of minimal surfaces.
Different aspects of the geometry of marginally trapped surfaces have drawn the atten-
tion of geometers recently. For instance in Aledo et al. (2005) and Huili Liu (2013)
the authors provide different Weierstrass-type representation formulas of marginally
trapped surfaces in R4

1. Also in Chen and Van der Veken (2010) the authors classified
marginally trapped surfaceswith parallelmean curvature in lorentzian spaceforms.The
notion of marginally trappedness has also been considered recently in higher dimen-
sions and co-dimensionswith very interesting results, seeAnciaux (2013) andAnciaux
and Godoy (2012).

Our purpose in this article is to study geometric properties of oriented marginally
trapped surfaces conformally immersed in S

4
1 using complex analysis, including also

the construction of a suitable null Gauss maps for such surfaces. We compute the
conformal invariants of these maps to obtain results on the congruence of marginally
trapped surfaces in S41. Also we characterize oriented marginally trapped surfaces with
parallel mean curvature vector and with flat normal bundle in terms of their conformal
invariants. As applications of these results we construct spectral non-trivial integrable
deformations and describe associated families of marginally trapped surfaces with
special properties.

More specifically, given an oriented spacelike surface S immersed in S41 its normal
bundle ν(S) is lorentzian, thus at each point x of S there are two linearly independent
null directions say, n+(x), n−(x) which vary smoothly with x and determine a pair
of smooth maps from S to the 3-sphere S3, viewed as the manifold of null directions
of Minkowski space R

5
1. These maps can be interpreted as (pseudo) inverses of the

conformal Gauss map Y introduced by Bryant (1984). We show that a choice of
orientation on ν(S) uniquely determines a distinguished map, say n+, which we call
the null Gauss map G of the spacelike surface S. When S is marginally trapped and
certain Hopf quadratic differential is never zero on S, thenG is a conformal immersion
of the surface S with values in the sphere S

3 and its geometry is described by two
conformal invariants: the schwartzian s and the normal Hopf differential κ (Burstall
et al. 2002; Ma 2005).

The paper is organized as follows: in Sect. 2 we derive the structure equations
of spacelike surfaces in S

4
1. Section 3 contains a short survey of O(3, 1)-invariant

geometry of surfaces in the conformal sphere S3.
In Sect. 4 we define null Gauss maps and obtain a differential equation (41) relat-

ing the conformal invariants s, κ with the δ-quadratic differential, a new geometric
invariant of the corresponding marginally trapped surface. A first consequence of this
equation is Theorem 4.1, a congruence result, which states that a marginally trapped
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surface is essentially determined up to ambient isometries by two conformal invari-
ants: κ, s of its null Gauss map. This contrasts for instance with results of Ganchev
and Milousheva (2012) in which the authors proved that a marginally trapped surface
in Minkowski 4-space is uniquely determined up to ambient lorentzian isometries by
seven invariants. Also in Hulett (2005) a congruence theorem for the so-called super-
conformal spacelike surfaces with zero mean curvature vector in S

2n
1 was obtained

using a different technique.
Another consequence of Eq. (41) is Theorem 4.2 which states that the null Gauss

map of an oriented marginally trapped surface S immersed S
4
1 is a constrained Will-

more surface in S
3 if and only if S has non-zero parallel mean curvature vector.

Constrained Willmore surfaces in R
3 and S

3 were introduced and studied by Bohle
et al. (2008). They are defined as extremes of the Willmore energy with respect to
variations preserving the underlying conformal structure of the surface.

In Sect. 5 we consider marginally trapped surfaces admitting non-trivial integrable
one parameter deformations. Recall that in classical minimal surface theory in R

3 an
interesting problem is to determine whether a given minimal surface can be deformed
in a nontrivial way. The oldest known example is the one-parameter deformation of
the catenoid into the helicoid (Spivak 1999). In our case the deformation is induced
by spectral symmetries of the compatibility equations which give rise to integrable
one-parameter deformations of surfaces called associated families. We study here one
parameter deformations of two kinds of marginally trapped surfaces in S

4
1 namely,

surfaces with non-zero parallel mean curvature vector, and surfaces with flat normal
bundle. In the first case the deformation originates in the spectral symmetry of the usual
(harmonic) Gauss map with values in the pseudo-riemannian Grasmannian G2(R

5
1)

of all oriented spacelike 2-planes through the origin of R5
1. For marginally trapped

surfaces in S41 with flat normal bundle we obtain a one-parameter deformation which
originates in the so-calledCalapso-Bianchi or T-transformation of isothermic surfaces
in S3 (Burstall et al. 2002; Ma 2005). We show that both deformations may be unified
into an extended action of C − {0} on the class of marginally trapped surfaces with
non-zero parallel mean curvature. Finally we give a description of this extended action
for non-isotropicmarginally trapped tori with non-zero parallel mean curvature vector.

2 Preliminaries

Denote by R
5
1 the real 5-dimensional vector space with canonical coordinates

(x0, x1, x2, x3, x4) equipped with the Lorentz inner product

〈x, y〉 = x0y0 + x1y1 + x2y2 + x3y3 − x4y4. (1)

We denote by {e0, e1, . . . e4} the canonical basis of R5
1, where

e0 = (1, 0, 0, 0, 0)t ,
e1 = (0, 1, 0, 0, 0)t ,
...

e4 = (0, 0, 0, 0, 1)t .
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The canonical basis is orthonormal with respect to the Lorentz inner product (1):

〈ei , ei 〉 = 1, for 0 ≤ i,≤ 3, 〈e4, e4〉 = −1,
〈ei , e j 〉 = 0, for i �= j.

De Sitter 4-space-time is defined as the unit sphere inR5
1: S

4
1 = {x ∈ R

5
1 : 〈x, x〉 =

1}. It is a connected simply connected 4-dimensional manifold which inherits from
R
5
1 a lorentzian metric 〈., .〉 of constant sectional curvature +1. We will consider the

complex bilinear extension of the Lorentz metric to C
5 given by 〈z, w〉 = z0w0 +

z1w1 + z2w2 + z3w3 − z4w4. We denote by C5
1 the complex space C5 endowed with

the (pseudo) hermitian inner product 〈z, w̄〉.
The Lie group SO(4, 1) acts transitively on S41 by isometries, so that choosing e0 ∈ S

4
1

as the base point, then S
4
1 is isometric to the (pseudo) riemmanian symmetric space

SO(4, 1)/SO(3, 1).
A non-zero vector X ∈ R

5
1 is said to be future pointing if 〈X, e4〉 < 0. This determines

a time orientation on S
4
1: a non-zero tangent vector X ∈ TpS

4
1 is future pointing

if its translated to the origin is future pointing. If X is future pointing and satisfies
〈X, X〉 = −1, then (its translated) X lies in the real 4-hyperbolic space H4 = {x ∈
R
5
1 : 〈x, x〉 = −1, x4 > 0}.
Let � be a connected orientable surface and f : � → S

4
1 a spacelike immersion,

that is, the induced metric g = f ∗〈., .〉 is riemannian and it determines a conformal
structure on �. Then f preserves this conformal structure i.e. 〈 fz, fz〉 = 0, for every
local complex coordinate z = x + iy on �, where ∂z := 1

2 (
∂
∂x − i ∂

∂y ), and ∂z̄ :=
1
2 (

∂
∂x + i ∂

∂y ), are the complex partial operators. Equivalently, f is conformal if and
only if for any complex coordinate z = x + iy,

〈 fx , fy〉 = 0, ‖ fx‖2 = ‖ fy‖2 > 0. (2)

Conversely, if f : � → S
4
1 is a conformal immersion from a Riemann surface,

then 〈 fx , fy〉 = 0, and ‖ fx‖2 = ‖ fy‖2 �= 0, for every local complex coordinate
z = x + iy. Since the ambient S41 is lorentzian, fx , fy are orthogonal and have
positive squared norm: ‖ fx‖2 = ‖ fy‖2 > 0, and so f : (�, g) → S

4
1 is a spacelike

isometric immersion, where g is the induced metric. With respect to a local complex
coordinate z = x + iy we introduce a conformal parameter u by 〈 fz, fz̄〉 =: e2u , so
that g = 2e2u(dx2 + dy2) is the local expression of the induced metric.

The pullback bundle by f of the tangent bundle of S41 decomposes into the tangent
bundle and the normal bundle of the surface: f ∗(TS41) = T� ⊕ν( f ). Since f : � →
S
4
1 is conformal (thus spacelike), and � is orientable, the normal bundle ν( f ) is an

orientable lorentzian vector bundle. Fixing an orientation on ν( f ), let {N1, N2} ⊂
�(ν( f )) be an (ordered) orthonormal frame satisfying

〈N2, N2〉 = −1, 〈N1, N2〉 = 0, 〈N1, N1〉 = 1.

If we demand that N2 be future pointing, then either {N1, N2} has the same orientation
as ν( f ), or {−N1, N2} has the same orientation as ν( f ). We say that an orthonormal
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frame {N1, N2} ⊂ �(ν( f )) is positively oriented, if {N1, N2} has the same orientation
as ν( f ) and N2 is (timelike) future pointing. Note that if {N1, N2} is positively oriented
then {−N1,−N2} has the same orientation as ν( f ), but it is not positively oriented
since −N2 points to the past.

The second fundamental form of f is defined by

〈II (X,Y ), N 〉 = −〈d f (X), dN (Y )〉, N ∈ �(ν( f )), X,Y ∈ T�,

and themean curvature vector of f is defined by
→
H := 1

2 traceII . Since f is conformal
we have 〈 fz, fz〉 = 〈 fz̄, fz̄〉 = 0, which implies 0 = ∂z〈 fz, fz〉 = 2〈 fzz, fz〉, and
0 = ∂z〈 fz̄, fz̄〉 = 2〈 fz̄z, fz̄〉, hence fz̄z has no tangential component. Therefore fz̄z

decomposes into its f and
→
H components by fz̄z = −e2u f + e2u

→
H .

On the other hand since f is conformal an easy calculation gives fzz = 2uz fz +
ξ1N1+ξ2N2, where ξ1 := 〈 fzz, N1〉, ξ2 := −〈 fzz, N2〉, and {N1, N2} ⊂ �(ν( f )) is an
orthonormal frame along f . In particular the (2, 0)-part of II is given by II (∂z, ∂z) =
ξ1N1 + ξ2N2. Again since f is conformal an easy calculation gives fzz = 2uz fz +
ξ1N1+ξ2N2, where ξ1 := 〈 fzz, N1〉, ξ2 := −〈 fzz, N2〉. In particular the (2, 0)-part of
II is given by II (∂z, ∂z) = ξ1N1+ξ2N2. Themean curvature vector si given in terms of

the normal frame by
→
H = h1N1 + h2N2, where h1 := 〈→

H , N1〉 and h2 := −〈→
H , N2〉.

Defining σ := −〈∂z N1, N2〉, we arrive at the structure equations of a conformal
immersion f : � → S

4
1:

fzz = 2uz fz + ξ1N1 + ξ2N2

fz̄z = −e2u f + e2u
→
H ,

∂z N1 = −h1 fz − e−2uξ1 fz̄ + σN2,

∂z N2 = h2 fz + e−2uξ2 fz̄ + σN1. (3)

The compatibility among these equations are just Gauss’s, Codazzi’s and Ricci’s equa-
tions:

Gauss, 2uz̄z = −e2u + e−2u(|ξ1|2 − |ξ2|2) − e2u‖→
H‖2,

Codazzi, e2u(∂zh1 + σh2) = ∂z̄ξ1 + ξ2σ̄ ,

e2u(∂zh2 + σh1) = ∂z̄ξ2 + ξ1σ̄ ,

Ricci, Im(σz̄) = e−2u Im(ξ1ξ̄2).

(4)

A spacelike surface f : � → S
4
1 is called marginally trapped if its mean curvature

vector is null or lightlike: 〈→
H ,

→
H〉 = 0. If

→
H �= 0, then after a change of orientation of

the normal bundle (i.e. after a change of sign N1 �→ −N1) if necessary, the marginally

trapped condition 〈→
H ,

→
H〉 = h21 − h22 = 0, reads h1 = h2, with h1 + h2 �= 0, in this

case the mean curvature vector satisfies

→
H = h(N1 + N2), with h = h1 = h2. (5)
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We call h the themean curvature function of the surface f with respect to the positively
oriented lorentzian normal frame {N1, N2}. From the second structure equation fz̄z =
−e2u f + e2u

→
H , it follows that the mean curvature function h satisfies

h = e−2u〈 fz̄z, N1〉 = −e−2u〈 fz̄z, N2〉. (6)

Hence f is marginally trapped if and only if 〈 fz̄z, (N1 + N2)〉 = 0. In this case the
compatibility conditions or equations of Gauss, Codazzi and Ricci above reduce to:

2uz̄z = −e2u + e−2u(|ξ1|2 − |ξ2|2),
e−2u(ξ1z̄ + ξ2σ̄ ) = (hz + σh),

e−2u(ξ2z̄ + ξ1σ̄ ) = (hz + σh),

Im(σz̄) = e−2u Im(ξ1ξ̄2). (7)

The gaussian curvature of the induced metric g is given by K = −
gu =
−2e−2uuz̄z , where 
g = 2e−2u∂z̄∂z , is the Laplace operator of the induced met-
ric g. From Gauss equation (4) we obtain the expression of the gaussian curvature of
the induced metric on �,

K = 1 − e−4u(|ξ1|2 − |ξ2|2), (8)

Denote by ∇⊥ the covariant derivative on the normal bundle ν( f ), then ω :=
〈∇⊥N2, N1〉 is the corresponding connection one form. Fixed an orientation on
the normal bundle ν( f ) the normal curvature is defined by dω = K⊥d Ag , where
d Ag is the area form of the induced metric g. Thus ω = 2Re(σdz), and so
dω = −4Im(σz̄)dx ∧ dy. From Ricci equation above it follows that Im(σz̄) =
e−2u Im(ξ1ξ̄2). Since d Ag = 2e2udx ∧ dy, the normal curvature function is given by

K⊥ = −e−2u Im(σz̄) = −e−2u Im(ξ1ξ̄2). (9)

Then the normal bundle is flat if and only if K⊥ = 0.
From Codazzi’s equation the ∇⊥ covariant derivative of the mean curvature vector

of a conformal immersion f : � → S
4
1 is given by

∇⊥
∂z

→
H = (∂zh1 + σh2)N1 + (∂zh2 + σh1)N2. (10)

In particular if f is marginally trapped then in a positively oriented orthonormal frame
{N1, N2} ⊂ �(ν( f )) the above formula becomes

∇⊥
∂z

→
H = (hz + σh)(N1 + N2). (11)

Therefore f has parallel mean curvature vector if and only if hz + σh = 0.

123

Author's personal copy



Beitr Algebra Geom (2017) 58:131–166 137

3 Surface theory in the conformal sphere S3

Wegive here a brief account ofMoebius surface geometry inS3. For detailed proofs and
further developements we refer the reader to Burstall et al. (2002), Hertrich Jeromin
(2003) and Ma (2005).

The null or light cone in R5
1 is defined by

L = {0 �= x ∈ R
5
1 : 〈x, x〉 = 0}. (12)

The future light cone L+ ⊂ L consists of future pointing vectors x of L. For every x
in S

3 ⊂ R
4, the point (x, 1) ∈ R

5
1 lies in the future light cone L+. We are using here

the fact that any vector x inR5
1 may be uniquely written as an ordered pair (x ′, t) with

x ′ in R
4 and t in R, thus giving rise to an isomorphism R

4 ⊕ R → R
5
1. In particular

points on L are of the form (x,±‖x‖2), with x in R
4. The map S

3 � x �→ [(x, 1)]
identifies the unit round sphere S3 ⊂ R

4 with the projectivization of the light cone,
P(L) ⊂ RP

5.
Let O+(4, 1) be the group of orthogonal transformations ofR5

1 preserving the time
orientation. Then each F ∈ O+(4, 1)maps null lines to null lines, and hence preserves
the light cone L. Moreover it is easy to see that O+(4, 1) acts transitively on S

3 by
g.[x] = [gx]. Here O+(4, 1) is referred to as the group of Moebius transformations
of the conformal sphere S3. Note that the subgroup of O(4, 1) preserving P(L+), is
precisely O+(4, 1).

A smooth map into the conformal sphere ψ : � → S
3 ≡ P(L) can be viewed as a

null line subbundle  of the trivial bundle � × R
5
1 via ψ(x) = x , x ∈ �. A (local)

lift of ψ is a smooth map X : U → L from an open subset U ⊂ �, such that the
null line spanned by X (x) is x for every x ∈ U . The map ψ is called a conformal
immersion if every local lift X of ψ is conformal, i.e. 〈Xz, Xz〉 = 0, 〈Xz, Xz̄〉 > 0,
for every coordinate z.

Let V := span{X, dX, Xzz̄}, where X is a conformal lift of ψ . It is easily seen
that V is in fact independent on the choice of a local coordinate z and any particular
conformal lift X of ψ . So V can be viewed as a vector sub-bundle V ⊂ R

5
1 × � on

which the ambientmetric ofR5
1 induces a vector bundlemetric of signature (3, 1). Each

fiber Vx determines a Moebius invariant 2-sphere S2(x) ≡ P(Vx ∩L) ⊂ P(L) ∼= S
3.

These spheres altogether comprise the so-called mean curvature sphere or central
sphere congruence of the surface ψ (Burstall et al. 2002). With respect to a fixed a
local coordinate z : U → C there is a distinguished local lift Y : U → L+ of ψ

taking values in the future light cone such that

〈Yz,Yz̄〉 = 1

2
,

or equivalently |dY |2 = |dz|2 onU . It is called the canonical lift of the surface ψ and
is Moebius invariant.

The complementary orthogonal line sub-bundle V⊥ is determined by � × R
5
1 =

V
⊥⊕ V⊥ and the connection D on V⊥ is just orthogonal projection of the usual

derivative in R5
1:
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DXv = [dXv]⊥, v ∈ �(V⊥), X ∈ T�.

Let N ∈ �(V ) be the unique section satisfying

〈N , N 〉 = 〈N ,Yz〉 = 〈N ,Yz̄〉 = 0, 〈Y, N 〉 = −1.

Thus V = span{Y, Re(Yz), Im(Yz), N } and it is shown in Burstall et al. (2002)
that the Moebius invariant frame {Y,Yz,Yz̄, N } ⊂ �(V ⊗ C) satisfies orthogonally
relations given by

〈Y,Y 〉 = 〈N , N 〉 = 0, 〈N ,Y 〉 = −1,

〈Y, dY 〉 = 〈N , dY 〉 = 〈dN , N 〉 = 0,

〈Yz,Yz〉 = 〈Yz̄,Yz̄〉 = 0, 〈Yz,Yz̄〉 = 1

2
. (13)

From the above equations it follows that Yzz is orthogonal to Y,Yz and Yz̄ and so there
is a unique choice of a local complex function s on � for which Yzz + s

2Y is a section
of the normal bundle V⊥ ⊗ C namely, s

2 = 〈Yzz, N 〉. In this way one arrives at the
following equation:

Yzz + s

2
Y = κ, (14)

defining uniquely the complex valued function s and the section κ of V⊥ ⊗ C, with
respect to the local coordinate z. The function s is interpreted as the schwartzian
derivative of the conformal immersion ψ , and κ is identified with the normal valued
Hopf differential of ψ , with respect to the coordinate z. By construction s and κ are
Moebius invariants of the immersion ψ with respect to a given coordinate z.

In Burstall et al. (2002) there is an interpretation of κ in terms of euclidean invariants
of the immersionψ which we briefly describe: There is a unique conformal immersion
̂ψ : � → S

3 ⊂ R
4 satisfying [(̂ψ(x), 1)] = ψ(x), ∀x ∈ �. Thus φ = (̂ψ(x), 1) is a

lift of ψ , which is called the euclidean lift of ψ (Burstall et al. 2002). Let ν(̂ψ) denote
the normal bundle of the immersed surface ̂ψ . Then there is a bundle isomorphism
ν(̂ψ) ∼= V⊥ given by

v �→ 〈v, ̂H 〉(̂ψ, 1) + (v, 0). (15)

where ̂H is the mean curvature vector of ̂ψ . Under this isomorphism κ ∈ �(V⊥ ⊗C)

corresponds to a complex section κ̂ ∈ ν(̂ψ)⊗C satisfying κ = 〈̂κ, ̂H〉(̂ψ, 1)+ (̂κ, 0).
Using (14) it is shown that

κ̂
dz2

|dz| = II (2,0)

|dφ| ,

where II (2,0) is the (2, 0)-part of the normal bundle valued (euclidean) second funda-
mental form of ̂ψ . In this way κ , up to the isomorphism (15), is the trace free part of
the second fundamental form, i.e., the normal bundle valued Hopf differential of ̂ψ ,
scaled by the square root of the ̂ψ-induced metric.
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From the orthogonality conditions (13) the structural equations of a conformal
immersion ψ : � → S

3 were obtained in Burstall et al. (2002):

(i) Yzz = − s

2
Y + κ,

(ii) Yz̄z = −〈κ, κ̄〉Y + 1

2
N ,

(iii) Nz = −2〈κ, κ̄〉Yz − sYz̄ + 2Dz̄κ. (16)

The compatibility among these equations are the following equations:

ConformalGauss : sz̄
2 = 3〈κ̄z, κ〉 + 〈κ̄, κz〉,

ConformalCodazzi : Im
(

κz̄ z̄ + s̄
2κ

) = 0.
(17)

When the local coordinate changes from z to w the new invariants s′ and κ ′ change
according to

κ ′ = κ

(

∂z

∂w

) 3
2
(

∂ z̄

∂w̄

)− 1
2

,

s′ = s

(

∂z

∂w

)2

+ Sw(z), (18)

where the usual schwartzian derivative of a meromorphic function g : � → C is given
by Sz(g) = (

g′′
g′ )′ − 1

2 (
g′′
g′ )2. The importance of the conformal Gauss and Codazzi’s

equations is reflected in the following fundamental theorem of conformal surface
theory,

Theorem 3.1 Burstall et al. (2002) Let � be a Riemann surface and ψ j : � → S
3

be conformal immersed surfaces inducing the same Hopf differentials and the same
schwartzians. Then there is a Moebius transformation T : S3 → S

3 with Tψ1 = ψ2.
Conversely, let κ and s be given data on� transforming according (18), which also

satisfy the conformal Gauss and Codazzi equations (17). Then there exists a conformal
immersion x : � → S

3 with Hopf differential κ and schwartzian s.

Remark 3.1 It is proved in Burstall et al. (2002) that κ dz2
|dz| is a globally defined

quadratic differential with values in L⊗C, where L is the real line bundle (K ⊗ K̄ )1/2

of densities of conformal weight 1 over� (Calderbank 1998). Then for any local coor-
dinate system (U, z), κ is can be viewed just as a local complex function on U ⊂ �

which transforms according (18).

Remark 3.2 If a conformal immersion ψ : � → S
3 has κ ≡ 0, then the image of

ψ is contained in a fixed 2-sphere S
2 ⊂ S

3, as follows from (16). Considering ψ

as a conformal map ψ : � → S
2 ≡ CP

1, it is shown in Burstall et al. (2002) that
s = (

ψ ′′
ψ ′ )′ − 1

2 (
ψ ′′
ψ ′ )2 which is the usual schwartzian derivative of ψ . In this case it is

shown that proved that s uniquely determines ψ up to transformations of PSl(2,C),
the Moebius transformation group of CP1.
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The map γ : � � x �→ V (x) with values in the grassmannian G3,1(R
5
1) is called

the conformal Gauss map of the immersion ψ (Bryant 1984; Burstall et al. 2002;
Ejiri 1988; Palmer 1991; Ma 2005). γ induces a positive definite conformal metric
on � given by gγ = 1

4 〈dγ, dγ 〉 = |κ|2|dz|2 (Ma 2005). The Willmore energy of the
conformal immersion ψ is defined as the total area of (�, gγ ) and is given by

W (ψ) = i

2

∫

�

|κ|2dz ∧ dz̄, (19)

which coincides (up to a constant multiple) with theWillmore energy of the immersion
ψ (Burstall et al. 2002). A conformal immersion ψ : � → S

3 is called a Willmore
surface if it extremizes the Willmore energy functional (19). It is known (Burstall
et al. 2002) thatψ is Willmore if and only if its conformal invariants κ and s (the Hopf
differential and the schwartzian derivative) satisfy the following stronger version of
the conformal Codazzi’s equation:

κz̄ z̄ + s̄

2
κ = 0. (20)

Spacelike surfaces in S41 are related to surfaces in S
3 andR3 through a double cover

of the conformal Gauss map γ , which is the Bryant’s Gauss conformal map Y : given
an oriented surface ψ : � → S

3 with mean curvature H , the conformal Gauss map
Yψ assigns to a point x ∈ � the oriented sphere S(x) ⊂ S

3 of radius |H(x)|−1 in
contact with the surface at ψ(x). Thus Yψ takes values in the manifold of all oriented
2-spheres (and planes) in S

3 which is identified with De Sitter 4-space S41 (Hertrich
Jeromin 2003). It was already implicit in the work of Blaschke that Yψ is marginally
trapped (Blaschke 1929; Palmer 1991).

4 The null Gauss map and its conformal invariants

Let f : � → S
4
1 be a conformal (spacelike) immersion and fix an orientation on

the normal bundle ν( f ). Let {N1, N2} ⊂ �(ν( f )) be a positively oriented lorentzian
orthonormal frame. Then for each p ∈ � the frame {N1, N2} determines the null line
span{N1(p) + N2(p)}. We claim that this null line depends only on p and not on
{N1, N2}. In fact, if {N ′

1, N
′
2} ⊂ �(ν( f )) is another positively oriented orthonormal

frame then both frames are related by a gauge,

N ′
1 = cosh(s)N1 + sinh(s)N2,

N ′
2 = sinh(s)N1 + cosh(s)N2.

from these equations it follows that N ′
1 + N ′

2 = es(N1 + N2), and so N ′
1 + N ′

2 and
N1 + N2 generate the same null line. Let

G : � → S
3, G(x) = [N1(x) + N2(x)], x ∈ �. (21)
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i.e. G(x) is the null line generated by N1(x) + N2(x), where {N1, N2} ⊂ �(ν( f ))
is any positively oriented orthonormal frame. Thus G is well defined by our previous
observation and we call it the null Gauss map of f .

Denote by ̂G the unique smoothmap from� to the round euclidean sphere S3 ⊂ R
4

such that [(̂G(x), 1)] = G(x) for every x ∈ �, then φ =: (̂G, 1) : � → L+ is
called the euclidean lift of G. Thus φ =: (̂G, 1) takes values in the conic section
S = {x ∈ L : 〈x, e4〉 = −1} which inherits from the ambient R5

1 a positive definite
metric of constant curvature +1, and so it is a copy of the round 3-sphere of radius
one.

For any positively oriented orthonormal frame {N1, N2} ⊂ �(ν( f )), X = N1+N2
is a local lift of G with values in L+. Using the structure equations (3) we see that

Xz = N1,z + N2,z = (h2 − h1) fz + e−2u(ξ2 − ξ1) fz̄ + σ X. (22)

Hence 〈X, fz〉 = 〈X, fz̄〉 = 0. Moreover since 〈 fz, fz〉 = 〈 fz̄, fz̄〉 = 0, 〈 fz, fz̄〉 =
e2u , then

〈Xz, Xz〉 = 〈N1,z + N2,z, N1,z + N2,z〉 = (h2 − h1)(ξ2 − ξ1) (23)

Thus if f is marginally trapped 〈Xz, Xz〉 = 0. Let Z be another local lift of G, then
X = λZ for some smooth non-zero function λ. With respect to a local coordinate
z we compute Xz = λz Z + λZz . Since 〈Z , Z〉 = 0, then 0 = 〈Z , Zz〉, hence 0 =
〈Xz, Xz〉 = λ2〈Zz, Zz〉, from which 〈Zz, Zz〉 = 0 follows. On the other hand since
Xz̄ = λz̄ Z + λZz̄ , then from 〈Z , Zz̄〉 = 0, and (22) we obtain

λ2〈Zz, Zz̄〉 = e−2u |ξ1 − ξ2|2 = 〈Xz, Xz̄〉. (24)

Hence away from the zeros of ξ1 − ξ2 it follows that 〈Xz, Xz̄〉 > 0 and 〈Zz, Zz̄〉 > 0.
In particular if ξ1 − ξ2 is never zero on� then G : � → S

3 is a conformal immersion.
We call q := (ξ1−ξ2)dz2 the Hopf quadratic differential of the marginally trapped

surface f : � → S
4
1. The quadratic Hopf differential was introduced in Aledo et al.

(2005) for marginally trapped surfaces in R4
1. We have proved the following Lemma:

Lemma 4.1 Let f : � → S
4
1 be a conformally immersed marginally trapped surface

and q its quadratic Hopf differential. Then every (local) lift Z of the null Gauss map
G satisfies 〈Zz, Zz〉 = 0 and 〈Zz, Zz̄〉 > 0 away from the zeros of q. In particular if
q(x) �= 0,∀x ∈ � then G : � → S

3 is a conformal immersion.

Since (̂G, 1) is a lift of G, then away from the zeros of q, ̂G satisfies 〈̂Gz, ̂Gz〉 = 0
and 〈̂Gz, ̂Gz̄〉 > 0, where 〈., .〉 is the round metric on the sphere S3. Thus if q is never
zero ̂G is a conformal immersion into the round 3-sphere.

Let f : � → S
4
1 be a spacelike immersion then from Ricci’s equation ν( f ) is flat if

and only if Im(σz̄) = 0. In this case σz̄ −σz̄ = σz̄ −σ z = 0 which shows that the real
one form η := −σdz − σdz̄ is closed. Hence there is a locally defined smooth real
function β such that dβ = η. One can define a new positively oriented orthonormal
lorentzian frame {N ′

1, N
′
2} by
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N ′
1 = cosh(β)N1 + sinh(β)N2, N ′

2 = sinh(β)N1 + cosh(β)N2.

Then it is easy to check that the new frame {N ′
1, N

′
2} has structure function σ ′ = 0,

so that {N ′
1, N

′
2} is a ∇⊥-parallel frame which is unique up to (constant) hyperbolic

rotations in ν( f ). We keep denoting by {N1, N2} this new positively oriented ∇⊥-
parallel orthonormal frame. If f is marginally trapped then Codazzi’s equations (4)
reduce to

ξ1,z̄ = ξ2,z̄ = e2uhz, h = h1 = h2, (25)

which imply (ξ1−ξ2)z̄ = e2u(h−h)z = 0, hence q is holomorphic. Conversely, if q is
holomorphic then again by Codazzi’s equation we obtain 0 = (ξ1−ξ2)z̄ = σ̄ (ξ1−ξ2).
If q does not vanish identically then σ must be zero away from the isolated zeros of
q, thus σ ≡ 0 by continuity. We have proved the following,

Lemma 4.2 Let f : � → S
4
1 be a marginally trapped surface. If f has flat normal

bundle the Hopf differential q = (ξ2 − ξ1)dz2 is holomorphic. Conversely, if q is
holomorpic and non-identically zero, then f has flat normal bundle.

Remark 4.1 (i) If a conformally immersed surface f : � → S
4
1 has zero mean

curvature vector then its normal bundle is not necessarily flat. In this case the Hopf
differential q is holomorphic as consequence of Codazzi’s equations (4).

(ii) If f : � → S
4
1 is marginally trapped with parallel mean curvature vector then

ν( f ) is flat (Rahim Elghanmi 1996) and so q is holomorphic by Lemma 4.2.
(iii) From (5) the ∇⊥-derivative of the mean curvature vector of a marginally trapped

surface in a positively oriented normal frame is given by (11). If ∇⊥→
H = 0

then ν( f ) is flat (Rahim Elghanmi 1996), hence the mean curvature function
h is constant in a positively oriented ∇⊥-parallel frame {N1, N2} ⊂ �(ν( f )).
Conversely if ν( f ) is flat, then σ = 0 for any ∇⊥-parallel orthonormal frame
{N1, N2} ⊂ �(ν( f )).

Remark 4.2 If q ≡ 0, then by (24) N1 + N2 is a constant null line for every oriented
lorentzian frame {N1, N2}, hence the null Gauss map G is constant. Since 〈 f, N1 +
N2〉 = 0, the surface f has constant curvature K = 1 by (8) and lies in the degenerated
hypersurfaceM0 ⊂ S

4
1, which is the intersection of the degenerate 4-plane [N1+N2]⊥

in R
5
1 with S

4
1. For instance this is just the case of any marginally trapped surface

f : S2 → S
4
1 with flat normal bundle. In fact since q is holomorphic on S

2, it must
vanish.

4.1 Spacelike isothermic surfaces

The normal valued quadratic Hopf differential of a spacelike immersion f : � → S
4
1

is the �(ν( f ) ⊗ C)-valued two-form

� = ξ1N1dz
2 + ξ2N2dz

2,

defined in terms of an orthonormal frame {N1, N2} ⊂ �(ν( f )), where ξ1, ξ2 are the
coefficients of II (∂z, ∂z), the (2, 0)-component of the second fundamental form of
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f . The spacelike surface f : � → S
4
1 is called isothermic (Wang 2012) if for each

point x ∈ � there is a coordinate z for which the normal valued Hopf differential
� is real-valued. From Ricci’s equation (4) it follows that every isothermic spacelike
immersion in S

4
1 has flat normal bundle.

4.2 Non-isotropic spacelike surfaces

Aconformally (hence spacelike) immersed surface f : � → S
4
1 is callednon-isotropic

if the quartic complex differential Q = 〈 fzz, fzz〉dz4 is never zero on �. The quartic
complex differential Qwas introduced inBryant (1984) in the context of the conformal
Gaussmap. In terms of an orthonormal frame {N1, N2} ⊂ �(ν( f )), Q = (ξ21 −ξ22 )dz4,
thus if f is non-isotropic then the Hopf differential q = (ξ1 − ξ1)dz2 is never zero
and so the null Gauss map G : � → S

3 is a conformal immersion.
The notion of isotropy has an interpretation in terms of the curvature hyperbola

which is the image of the unit circle on Tp� under the second fundamental form of
f :

{IIp(X, X) : X ∈ Tp�, ‖X‖2 = 1} ⊂ T⊥
p �

It is shown that f is non-isotropic if and only if the curvature hyperbola at each point
of � is non-equilateral (Rahim Elghanmi 1996). A conformal non-isotropic spacelike
immersion f : � → S

4
1 with zero mean curvature vector is also called harmonic

superconformal (Hulett 2005). Hence non-isotropic marginally trapped surfaces can
be viewed as natural generalizations of harmonic superconformal surfaces.

4.3 Sphere congruences

Let f : � → S
4
1 be a non-isotropic marginally trapped surface with null Gauss map

G and consider the central sphere congruence of the surface G : � → S
3, given

by the subbundle V = span{X, dX, Xzz̄} ⊂ � × R
5
1, where X : � → L+ is any

local lift of G. Since S41 identifies with the manifold of oriented 2-spheres in S
3, the

immersion f is associated to the 2-sphere congruence � � x �→ S(x), where S(x) is
the 2-sphere obtained by projectivization of the intersection of the Minkowski vector
subspace f ⊥(x) ⊂ R

5
1 with the null cone L:

S(x) = P( f ⊥(x) ∩ L) ⊂ S
3.

Note that the antipodal surface (− f ) determines the same sphere congruence x �→
S(x). We say that S(x) is oriented if it is associated to f , and opposite oriented if it
is associated to − f . We claim that f ⊥ = V , i.e. both sphere congruences coincide.
To prove the claim we use the local lift of G given by X := N1 + N2 : U → L+,
where {N1, N2} ⊂ �(ν( f )) is a positively oriented orthonormal lorentzian frame.
Thus V = span{X, Re(Xz), Im(Xz), Xzz̄}. In particular 〈X, f 〉 = 0 since N1, N2
are normal to f . On the other hand from (22),
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Xz = e−2u(ξ2 − ξ1) fz̄ + σ X. (26)

Hence 〈 f, Xz〉 = 〈 f, Xz̄〉 = 0, or 〈 f, dX〉 = 0. Since every lift W of G is a multiple
of X by some function, then W satisfies 〈 f,W 〉 = 0 and 〈 f, dW 〉 = 0. This just says
that G is an envelope of the congruence determined by f (Hertrich Jeromin 2003).
On the other hand taking ∂z̄ on (26) and using again (3) yields

Xzz̄ = e−2u(ξ2 − ξ1)(ξ̄1N1 + ξ̄2N2) + σe−2u(ξ̄2 − ξ̄1) fz + (σz̄ + |σ |2)X,

from which 〈 f, Xzz̄〉 = 0 follows and so V ⊆ f ⊥. Thus V = f ⊥ since V has rank
four. We have proved the following

Proposition 4.1 Let f : � → S
4
1 be a non-isotropic conformal marginally trapped

immersion with null Gauss map G : � → S
3. Then G is an envelope of the spherical

congruence determined by f . Moreover, the central sphere congruence of the null
Gauss map G coincides with the spherical congruence determined by ± f .

Recall from Sect. 3 that the correspondence γG : x �→ V (x) defines the conformal
Gauss map of the surface G : � → S

3. Since V = f ⊥, then γG takes values in
G3,1(R

5
1) the grassmannian of all subspaces of R5

1 with signature (+ + +−). Since
V and V⊥ = R f determine each other then either of them can be used to define
the conformal Gauss map of G. Thus for each x ∈ �, γG(x) = R f (x) belongs
to the manifold of all spacelike lines through the origin of R5

1 which identifies also
with G3,1(R

5
1). Note that the projection S

4
1 → G3,1(R

5
1) given by P : p �→ Rp is a

lorentzian double cover. Intersecting the spacelike line γG(x) = R f (x) with S
4
1 we

obtain {+ f (x),− f (x)} ⊂ S
4
1 which is just the fiber of P over G(x) ∈ S

3. Thus the
surface f and its antipodal − f have the same null Gauss map G. Then the null Gauss
map G can be considered as a pseudo-inverse of the conformal Gauss map γG .

4.4 A differential equation relating κ, s and δ

Let Y be the canonical lift of G with respect to a local coordinate z. Then there is a
non-zero function τ such that X = τY . Using (22), we compute

τzY + τYz = Xz = e−2u(ξ2 − ξ1) fz̄ + σ X. (27)

Hence 〈Xz, Xz̄〉 = τ 2

2 = τ 2〈Yz,Yz̄〉 = e−2u |ξ2 − ξ1|2, so that

τ = √
2e−u |ξ2 − ξ1|. (28)

Hence we obtain the canonical lift of G in terms of X = N1 + N2:

Y = eu√
2|ξ2 − ξ1|

(N1 + N2).
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A routine computation using the structure equations of f shows that Y is in fact inde-
pendent on any particular choice of a positively oriented lorentzian frame {N1, N2}.
On the other hand

τzzY + 2τzYz + τYzz = Xzz

= (e−2u(ξ2 − ξ1))z fz̄ + e−2u(ξ2 − ξ1)(−e2u f + e2uhX)

+ σz X + σ {e−2u(ξ2 − ξ1) fz̄ + σ X}.

Adding and substracting τ s
2Y we obtain

(τzz − τ
s

2
)Y + 2τzYz + τ(Yzz + s

2
Y ) = (e−2u(ξ2 − ξ1))z fz̄

+ e−2u(ξ2 − ξ1)(−e2u f + e2uhX) + σz X + σ {e−2u(ξ2 − ξ1) fz̄ + σ X}.
(29)

Comparing the V⊥ components in this identity we obtain the equality

(ξ1 − ξ2) f = τ
(

Yzz + s

2
Y

)

= τκ, (30)

Inserting the function τ of (28) we obtain a formula for the normal valued Hopf
differential of G which makes sense only if the Hopf quadratic differential of f is
non-zero:

κ = (ξ1 − ξ2)eu√
2|ξ1 − ξ2|

f. (31)

Using the polar form (ξ1−ξ2) = |ξ1−ξ2|eiθ the above expression becomes κ = eu+iθ√
2

f

and so by Remark 3.1 we identify

κ ≡ eu+iθ

√
2

, where
(ξ1 − ξ2)

|ξ1 − ξ2| = eiθ . (32)

In particular we recover the conformal parameter from κ above:

e2u = 2〈κ, κ〉. (33)

InBurstall et al. (2002) it is shown that any sectionv ∈ �(V⊗C) canbedecomposed
as follows:

v = −〈v, N 〉Y − 〈v,Y 〉N + 2〈v,Yz̄〉Yz + 2〈v,Yz〉Yz̄ . (34)

We use this formula to expand the particular section fz ∈ �(V ⊗ C). Since τY =
N1 + N2 = X , it follows 〈 fz,Y 〉 = 0. Also from 0 = 〈 f,Yz〉z = 〈 fz,Yz〉 + 〈 f,Yzz〉,
Eq. (16)-(i), and 〈 f,Y 〉 = 0, we compute

〈 fz,Yz〉 = −〈 f,Yzz〉 = −
〈

f,− s

2
Y + κ

〉

= −〈 f, κ〉 = −eu+iθ

√
2

.

123

Author's personal copy



146 Beitr Algebra Geom (2017) 58:131–166

On the other hand since 0 = 〈 f,Yz̄〉z = 〈 fz,Yz̄〉 + 〈 f,Yzz̄〉, then

〈 fz, Yz̄〉 = −〈 f,Yzz̄〉 = |κ|2〈Y, f 〉 − 1

2
〈N , f 〉 = 0.

Also 〈 f, N 〉 = 0, implies 〈 fz, N 〉 + 〈 f, Nz〉 = 0. Hence 〈 fz, N 〉 = −〈 f, Nz〉 =
−2〈 f, Dz̄κ〉. Since Dz̄κ = (u + iθ)z̄κ , then

〈 fz, N 〉 = −√
2(u + iθ)z̄e

u+iθ .

From these equations and using (34) with v = fz , we obtain

fz = √
2eu+iθ {(u + iθ)z̄Y − Yz̄}. (35)

Therefore,

fzz̄ = √
2eu+iθ

{

((u + iθ)z̄)
2 + (u + iθ)z̄ z̄ + s̄

2

}

Y − √
2eu+iθ κ̄. (36)

On the other hand using the structure equations of the immersion f and X =
N1 + N2 = τY , we obtain

fzz̄ = −e2u f + e2uhX = −e2u f + e2uhτY. (37)

Note that
√
2eu+iθ κ̄ = e2u f , so that equating (36) and (37) gives

e2uhτ = √
2eu+iθ

{

((u + iθ)z̄)
2 + (u + iθ)z̄ z̄ + s̄

2

}

.

Inserting the function τ given by (28) in this expression we obtain the following
formula:

h|ξ2 − ξ1|e−iθ = ((u + iθ)z̄)
2 + (u + iθ)z̄ z̄ + s̄

2
, (38)

or conjugating both sides,

h(ξ1 − ξ2) = ((u − iθ)z)
2 + (u − iθ)zz + s

2
. (39)

Now recall the connection D on the normal bundle V⊥. Any section v ∈ �(V⊥) can
be written as v = b f for some smooth function b. Thus dX (b f ) = dXb f + bdX f .
The condition d f ⊥ f implies DX f = 0, hence

DX (v) = (dXb) f. (40)

Thus we may identify DX (v) ≡ dXb. Since κ ≡ eu+iθ√
2
, we compute

Dz̄Dz̄κ = κz̄ z̄ =
(

(u + iθ)2z̄ + (u + iθ)z̄ z̄

)

κ.
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On the other hand since h(ξ1 − ξ2)κ = eu√
2
h|ξ2 − ξ1|, then h(ξ1 − ξ2)κ is real valued

and so Eq. (38) becomes

κz̄ z̄ + s̄

2
κ = Re

(

h(ξ1 − ξ2) κ
)

. (41)

Equation (41) relates the quadratic differential h(ξ1−ξ2)dz2 of amarginally trapped
surface f : � → S

4
1 to the conformal invariants κ, s of its null Gauss map G. Since

the quadratic differential δ := h(ξ1 − ξ2)dz2 plays a key role in (41), we call it the
δ-differential of the marginally trapped surface f .

Remark 4.3 Equation (41) implies the conformalCodazzi equation Im(κz̄ z̄+ s̄
2κ) = 0.

The conformal Gauss equation (17) may be recovered from (39) by a long calculation
using Gauss, Codazzi and Ricci’s equations (4).

4.5 Congruence

A basic question is to what extent a marginally trapped surface is determined by the
conformal invariants of its null Gauss map. We obtain the following:

Theorem 4.1 Let f, f ′ : � → S
4
1 be non-isotropic marginally trapped surfaces with

null Gauss maps G,G ′. If κ = κ ′, s = s′ then there is an isometry � of S41 such that
� f = f ′. As a consequence of this δ = δ′.

Proof By Theorem 3.1 there is a Moebius transformation T ∈ O+(4, 1) of S
3

such that TG = G ′. Recall that the Moebius group O+(4, 1) acts on S
3 by

T ([x]) = [T x], ∀x ∈ L. Let Y be the canonical lift of G with respect to a holo-
morphic coordinate z, then Y ′ = TY is the canonical lift of G ′ with respect to z. Since
V = span{Y, Re(Yz), Im(Yz),Yzz̄}, it follows that T V = V ′ and so T V⊥ = V ′⊥.
This last equality implies T f = ± f ′ where the sign ambiguity reflects the fact that the
sphere congruences determined by f and f ′ are (modulo Moebius transformations)
equal up to orientation. Defining � = T , if T f = f ′ and � = −T , if T f = − f ′,
then � is an isometry of S41 satisfying � f = f ′. In particular if T is the identity, then
G = G ′ and so V⊥ = R f = R f ′, which implies f ′ = ± f .

Let {N1, N2} ⊂ �(ν( f )) be a positively oriented orthonormal frame, then
{�N1,�N2} ⊂ �(ν( f ′)) is an orthonormal frame. We can choose an orientation on
ν( f ′) so that {�N1,�N2} ⊂ �(ν( f ′)) is a positively oriented normal frame along f ′.
Since

→
H = h(N1+N2) is themean curvature vector of f , then�

→
H = h(�N1+�N2)

is the mean curvature vector of f ′. Also since II (∂z, ∂z) = ξ1N1 + ξ2N2, then
II ′(∂z, ∂z) = ξ1�N1 + ξ2�N2 and so δ′ = h(ξ1 − ξ2)dz2 = δ. ��
The following result is a partial converse of the previous Theorem:

Lemma 4.3 Let f, f ′ : � → S
4
1 be non-isotropic marginally trapped surfaces which

induce the same conformal metric. If either

(i) f, f ′ are both non-stationary and δ = δ′, or
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(ii) f, f ′ are both stationary with q = q ′, then there is an isometry � of S41 such that
� ◦ f = f ′.

Proof Assume first that f, f ′ are both non-stationary with δ = δ′ i.e. h(ξ1−ξ2)dz2 =
h′(ξ ′

1 − ξ ′
2)dz

2, hence h(ξ1 − ξ2) = h′(ξ ′
1 − ξ ′

2). Since h, h′ are real and non-zero, we
may assume they are both positive (if say h < 0, we can replace f by its antipodal
− f which has mean curvature function −h > 0). Since by hypothesis the Hopf
differentials q, q ′ are never zero, we use the polar form ξ1 − ξ2 = |ξ1 − ξ2|eiθ and
ξ ′
1 − ξ ′

2 = |ξ ′
1 − ξ ′

2|eiθ
′
. Hence the equality δ = δ′ implies

h|ξ1 − ξ2|eiθ = h′|ξ ′
1 − ξ ′

2|eiθ
′
.

It follows that θ − θ ′ = 2kπ with integer k. Since by hypothesis f and f ′ induce the
same conformal metric, we have u = u′ and so (32) implies κ = κ ′. On the other
hand from δ = δ′ and (41) it follows that s = s′. Thus G,G ′ have the same conformal
invariants κ and s, hence (i) follows by applying the preceding Theorem.

If now f, f ′ are both stationary with q = q ′, then |ξ1 − ξ2|eiθ = |ξ ′
1 − ξ ′

2|eiθ
′
, and

so θ − θ ′ is an integer multiple of 2π . Thus since u = u′ by hypothesis, (32) implies
κ = κ ′. Since f, f ′ are both stationary, then δ = δ′ = 0. Thus from (41), we conclude
that s = s′, and so G,G ′ have the same conformal invariants. ��

A conformal immersed surface ψ : � → S
3 is called constrained Willmore if it

extremizes the Willmore energy functional with respect to variations through confor-
mal immersions (Burstall et al. 2002). It has been proved in Bohle et al. (2008) that
ψ is constrained Willmore if and only if its conformal invariants κ, s satisfy

κz̄ z̄ + s̄

2
κ = Re(η̄κ), (42)

for some holomorphic quadratic differential ηdz2 on �. Equations (42) and (41) are
related. In fact, we have seen before that for an immersed non-isotropic marginally
trapped surface f : � → S

4
1 the quantity h(ξ1 − ξ2)κ is real, so that we ask under

what conditions is δ = h(ξ1 − ξ2)dz2 holomorphic.

Lemma 4.4 Let f : � → S
4
1 be a non-isotropic conformally immersed marginally

trapped surface with non-zero mean curvature vector. Then the following affirmations
are equivalent:

(i) The quartic complex differential Q = 〈 fzz, fzz〉dz4 is holomorphic,
(ii) The quadratic complex differential δ = h(ξ1 − ξ2)dz2 is holomorphic,
(iii) f has parallel mean curvature vector.

Proof Let {N1, N2} ⊂ �(ν( f )) be a positively oriented orthonormal frame, then
the quartic differential becomes Q = (ξ21 − ξ22 )dz4, where ξ1 = 〈 fzz, N1〉, ξ2 =
−〈 fzz, N2〉 and

→
H = h(N1 + N2). Since f is marginally trapped Codazzi’s equa-

tions (4) reduce to

e−2u(ξ1z̄ + σ̄ ξ2) = e−2u(ξ2z̄ + σ̄ ξ1) = hz + σh.
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Using these quations we compute

(ξ21 − ξ22 )z̄ = 2ξ1∂z̄ξ1 − 2ξ2∂z̄ξ2

= 2ξ1(e
2u(hz + σh) − ξ2σ̄ ) − 2ξ2(e

2u(hz + σh) − ξ1σ̄ )

= 2e2u(hz + σh)(ξ1 − ξ2).

Since f is non-isotropic q is never zero, thus Q is holomorphic if and only if hz+σh =
0, which is just the parallel mean curvature equation (11). This proves (i) ⇔ (iii).

Again from Codazzi’s equation we get (ξ1 − ξ2)z̄ = σ̄ (ξ1 − ξ2), which implies
(h(ξ1 − ξ2))z̄ = (hz̄ + σ̄h)(ξ1 − ξ2). Hence (ξ21 − ξ22 )z̄ = 2e2u(h(ξ1 − ξ2))z̄ , thus δ

is holomorphic if and only if Q is holomorphic which proves (i) ⇔ (ii). ��
Note for instance that there is no non-isotropic spacelike immersion f : S2 → S

4
1

with parallel non-zero mean curvature vector. Isotropic marginally trapped surfaces
in R4

1, and S
4
1 have been considered in Cabrerizo et al. (2010).

Another consequence of Eq. (41) is the following result:

Theorem 4.2 Let f : � → S
4
1 be a non-isotropic conformally immersed marginally

trapped surface with null Gauss map G and mean curvature vector
→
H. Then,

(a)
→
H = 0 if and only if G : � → S

3 is a Willmore surface.

(b) If
→
H �= 0, then ∇⊥→

H = 0 if and only if G : � → S
3 is a constrained Willmore

surface.

Proof
→
H = 0 if and only if δ ≡ 0 by (5) if and only if Eq. (41) becomes κz̄ z̄ + s̄

2κ = 0,
which is just the condition for G : � → S

3 being a Willmore surface. On the
other hand the conformal invariants κ, s and the δ-differential of f satisfy Eq. (41) in
which h(ξ1 − ξ2)κ is real valued. If f has non-zero parallel mean curvature vector then
δ = h(ξ1−ξ2)dz2 is holomorphic by Lemma 4.4. This precisely says thatG : � → S

3
1

is constrained Willmore.
Conversely if the null Gauss map G : � → S

3
1 of f is a constrained Willmore

surface then κz̄ z̄ + s̄
2κ = Re (η κ), for some holomorphic quadratic differential ηdz2.

But κ, s uniquely determine the δ-differential of f by Theorem 4.1, so that δ = ηdz2.
Therefore δ is holomorphic which implies that f has parallel mean curvature vector
by Lemma 4.4. ��

5 One-parameter deformations and associated families

5.1 The S1-deformation of marginally trapped surfaces with non-zero parallel
mean curvature

Here we consider the harmonic map equation and its loop group formulation for
maps of Riemann surfaces with values in the Grassmann manifoldG2(R

5) of oriented
spacelike 2-planes through the origin ofR5

1. We describe the spectral symmetry of the
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Gaussmapofmarginally trapped surfaces inS41 with parallelmean curvature vector and
construct non-trivial one-parameter deformations. A consequence is that marginally
trapped surfaces in S

4
1 with non-zero parallel mean curvature always come in one-

parameter deformation families called associated families. We use these associated
families to obtain their conformal invariants.

We start recalling that 2
R
5
1 = span{ei ∧ e j : 0 ≤ i < j ≤ 4} ∼= R

10, where
{e0, . . . e4} is the canonical orthonormal basis of R5

1. There is a familiar identification
of so(4, 1) with 2

R
5
1 via:

(x ∧ y)(u) = 〈x, u〉y − 〈y, u〉x . (43)

Under this identification one obtains

ei ∧ e j =
{

E ji − Ei j , 0 ≤ i < j ≤ 3,
Ei4 + E4i , 0 ≤ i < 4,

(44)

where Ei j is the 5 × 5 matrix with a +1 in entry (i, j).
We shall use that 2

R
5
1 is equipped with the nondegenerate pseudo-riemannian

inner product given by:

〈x ∧ y, x ′ ∧ y′〉 = 〈x, x ′〉〈y, y′〉 − 〈x, y′〉〈y, x ′〉. (45)

Thus 2(R5
1) has signature (6, 4) with respect to this inner product since the set

{ei ∧ e j : 0 ≤ i < j ≤ 4} is an orthonormal basis of 2(R5
1), satisfying

‖ei ∧ e j‖2 = 1, 0 ≤ i < j ≤ 3,

‖ei ∧ e4‖2 = −1, 0 ≤ i < 4.

A straightforward calculation using (43), (44) and (45) shows that the adjoint repre-
sentation of SO(4, 1) on bivectors takes the form

Ad(F)(x ∧ y) = Fx ∧ Fy, F ∈ SO(4, 1). (46)

It follows from (46) that the inner product (45) is invariant under the adjoint action of
SO(4, 1).

Using that d(Ad) = ad, (43) and (46) we obtain the expression of the Lie bracket
of bivectors:

[x ∧ y, x ′ ∧ y′] = 〈x, x ′〉 y∧ y′ − 〈y, x ′〉 x ∧ y′ + 〈x, y′〉 x ′ ∧ y−〈y, y′〉 x ′ ∧ x . (47)

Any oriented spacelike 2-plane P through the origin of R5
1 can be identified with

the bi-vector x∧ y ∈ 2
R
5
1, where {x, y} is an oriented orthonormal basis of P . Hence

the Grassmann manifold of all oriented spacelike 2-planes of R5
1 through the origin is

given by:

G2(R
5
1) = {x ∧ y ∈ 2(R5

1) : 〈x, x〉 = 〈y, y〉 = 1, 〈x, y〉 = 0}.
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This allows us to view G2(R
5
1) as a submanifold of so(4, 1) ≡ 2(R5

1) in a natural
way. The ambient pseudo-metric on so(4, 1) ≡ 2(R5

1) induces a pseudo-metric
on G2(R

5
1) of signature (4, 2) with respect to which SO(4, 1) acts transitively by

isometries via (46). The inclusionmapG2(R
5
1) ↪→ 2(R5

1) is the standard imbedding
of the pseudo Kaehler symmetric space G2(R

5
1).

We fix the base point E := e1 ∧ e2 ∈ G2(R
5
1), which identifies via (43) with

the matrix E21 − E12 ∈ so(4, 1). Thus G2(R
5
1) is diffeomorphic to the quotient

SO+(4, 1)/H , where H is the connected component of the identity of the isotropy
subgroup of E . Let τ be the automorphism of SO(4, 1) defined by τ(F) = LFL ,
where L := diag(1,−1,−1, 1, 1) ∈ SO(4, 1). Then Fix(τ )0 ⊆ H ⊆ Fix(τ ),
where Fix(τ )0 is the connected component of the subgroup of fixed points of τ . The
Lie algebra so(4, 1) then splits into the direct sum of the (±1)-eigenspaces of dτe
which are given respectively by

h :=
{( 0 0 0 m n

0 0 s 0 0
0 −s 0 0 0

−m 0 0 0 t
n 0 0 t 0

)

: s, t,m, n ∈ R

}

,

m :=
⎧

⎨

⎩

⎛

⎝

0 a b 0 0−a 0 0 c d
−b 0 0 e k
0 −c −e 0 0
0 d k 0 0

⎞

⎠ : a, b, c, d, e, k ∈ R

⎫

⎬

⎭

. (48)

Since dτe is a Lie algebra automorphism it follows that the decomposition so(4, 1) =
h ⊕ m is symmetric, hence reductive since h,m satisfy the relations:

[h,m] ⊆ m, [h, h] ⊆ h, [m,m] ⊆ h. (49)

It is not difficult to check that h is isomorphic to so(2) ⊕ so(3, 1). Also from (48)
and (49) it follows that X ∈ h = Lie(H) if and only if [X, E] = 0.

Let φ : � → G2(R
5
1) be a smooth map and F : � → SO(4, 1) a locally defined

map such that φ = Ad(F)E = Fe1 ∧ Fe2. Such F is called a (local) frame of φ (if �

is simply connected then there is always a global frame F of φ). From d(Ad) = ad
one easily derives the useful identity

d Ad(F) = Ad(F) ◦ ad α,

in whichα := F−1dF is the pull-back of the leftMaurer–Cartan one form of SO(4, 1)
by the frame F . Using this identity we obtain the derivative of φ:

dφ = Ad(F)[α, E] = [Ad(F) ◦ adα, Ad(F)E]. (50)

On the other hand we can express α = Adz + Bdz̄, where the matrices A, B ∈
so(4, 1,C) are defined by A := F−1Fz and B := F−1Fz̄ . Then the integrabilty
condition Fzz̄ = Fz̄z in terms of A, B reads Az̄ − Bz = [A, B], which is equivalent to
theMaurer–Cartan equation: dα+ 1

2 [α∧α] = 0. Recall that the wedge product of two
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Lie algebra-valued one forms a, b on� is defined by [a∧b](X,Y ) := [a(X), b(Y )]−
[a(Y ), b(X)], X,Y ∈ T�.

Decomposing A = Ah+ Am and B = Bh+ Bm, with Ah, Bh ∈ hC and Am, Bm ∈
mC, α can be written as

α = αh + αm, αh = Ahdz + Bhdz̄, αm = Amdz + Bmdz̄, (51)

where αh ∈ �(h ⊗ T ∗�), and αm ∈ �(m ⊗ T ∗�).
Using (50), the above decomposition and [Ah, E] = 0 we obtain

dφ(∂z) = Ad(F)[α(∂z), E] = Ad(F)[Am + Ah, E] = Ad(F)[Am, E]
= [Ad(F)Am, φ].

By viewing φ as amap into the ambient space2(R5
1) rather than intoG2(R

5
1)wemay

compute the tension of φ. Choose any conformal metric g on �, then the Levi-Civita
connection ∇g satisfies ∇g

∂z̄
∂z = 0. Thus since [[Bm, Am], E] = 0, we obtain

∂z̄dφ(∂z) − dφ(∇g
∂z̄

∂z) = ∂z̄ Ad(F)[Am, E] =
Ad(F) ◦ ad α(∂z̄)([Am, E]) + Ad(F)[∂z̄ Am, E] =
Ad(F)[Bh + Bm, [Am, E]] + Ad(F)[∂z̄ Am, E] =
Ad(F)[∂z̄ Am + [Bh, Am], E] + Ad(F)[Bm, [Am, E]].

Taking into account that

Ad(F)[∂z̄ Am + [Bh, Am], E] ∈ TφG2(R
5
1)

C,

Ad(F)[Bm, [Am, E]] ∈ T⊥
φ G2(R

5
1)

C,

then up to a non-zero multiple depending on the conformal metric g the tension of φ

is given by
(∂z̄dφ(∂z))

T = Ad(F)[ ∂z̄ Am + [Bh, Am], E], (52)

where (, )T denotes the component in TφG2(R
5
1). It follows that φ : � → G2(R

5
1) is

harmonic if and only if
∂z̄ Am + [Bh, Am] = 0. (53)

According to the decomposition TC� = T ′� ⊕ T ′′�, αm and αh decompose into
its (1, 0) and (0, 1) parts respectively: αm = α′

m + α′′
m and αh = α′

h + α′′
h, where

α′
m = α′′

m and α′
h = α′′

h. From (51) it follows that

α′
m = Amdz, α′′

m = Bmdz̄, αh = Ahdz + Bhdz̄. (54)

Therefore dα′
m = ∂α′

m = −∂z̄ Amdz ∧ dz̄, where d = ∂ + ∂ . Also

[αh ∧ α′
m] = [(Ahdz + Bhdz̄) ∧ Amdz] = −[Bh, Am]dz ∧ dz̄.
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Thus the harmonic map equation (53) becomes

dα′
m + [αh ∧ α′

m] = 0. (55)

According to the decomposition α = αh + αm, the Maurer–Cartan equation dα +
1
2 [α ∧ α] = 0, splits up into m and h parts:

dα′
m + [αh ∧ α′

m] + dα′′
m + [αh ∧ α′′

m] = 0,
dαh + 1

2 [αh ∧ αh] + [α′
m ∧ α′′

m] = 0.
(56)

Combining the above equations with (55) one obtains

dα′′
m + [αh ∧ α′′

m] = 0,
dαh + 1

2 [αh ∧ αh] + [α′
m ∧ α′′

m] = 0.
(57)

Let λ ∈ C, with |λ| = 1 and consider the one-parameter family of one forms
defined by

αλ := λ−1α′
m + αh + λα′′

m. (58)

Note that since α′
m = α′′

m and αh = αh, then αλ is g-valued for every λ ∈ S
1.

Comparing coefficients of λ, it follows that equations (57) above hold for α if and
only if the one-parameter family αλ satisfies

dαλ + 1

2
[αλ ∧ αλ] = 0, ∀λ ∈ S

1. (59)

It follows that φ : � → G2(R
5
1) is harmonic if and only if (59) holds. Equivalently

φ is harmonic if and only if d + αλ, λ ∈ S
1 is a loop of flat connections on the trivial

bundle � × so(4, 1).
Now let f : � → S

4
1 be an conformally immersed non-isotropicmarginally trapped

surface satisfying 〈 fz, fz̄〉 = e2u where u is a local conformal parameter. Then the
Gauss map of f is given with respect to a local coordinate z = x + iy by

γ f = e−2u

2
fx ∧ fy = −ie−2u fz ∧ fz̄ . (60)

A frame F = (F0, F1, F2, N1, N2) ∈ SO(4, 1) (in ordered columns notation) is
adapted to the surface f or f -adapted if F0 = f and F1, F2 span the tangent space of
the immersed surface. For such frame F , the fields N1, N2 are sections of ν( f ) i.e. they
form a lorentzian orthonormal frame of normal vectors along f . Since f is conformal
and F is f -adapted we can rotate within the tangent plane d f (T�) = span{F1, F2}
if necessary, so that fz = eu√

2
(F1 − i F2). In this case F1 = e−u√

2
fx , F2 = e−u√

2
fy . Then

γ f = F1 ∧ F2, so that F also frames the Gauss map γ f .
We assume that the f -adapted frame F ∈ SO+(4, 1) is defined on the universal

convering �̃. In terms of F the structure equations (3) of the marginally trapped
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immersed surface f with respect to a coordinate z can be written as Fz = F.A, where
the matrix A is given by

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 − eu√
2
i eu√

2
0 0

eu√
2

0 iuz −a1 a2

−i eu√
2

−iuz 0 −ib1 ib2
0 a1 ib1 0 σ

0 a2 ib2 σ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (61)

with coefficients
a1 = euh+e−uξ1√

2
, b1 = −euh+e−uξ1√

2
,

a2 = euh+e−uξ2√
2

, b2 = −euh+e−uξ2√
2

.
(62)

In this case the equations of Gauss, Codazzi and Ricci (4) encoded in the Maurer–
Cartan equation dα + 1

2 [α ∧ α] = 0, are just the integrability conditions for the
existence of an f -adapted frame F solving F−1dF = α.

Decompose A = Am + Ah, and B = Bm + Bh, where

Am =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 − eu√
2
i eu√

2
0 0

eu√
2

0 0 −a1 a2

−i eu√
2

0 0 −ib1 ib2
0 a1 ib1 0 0
0 a2 ib2 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Bm = Am, (63)

Ah = diag(0, ( 0 iuz
−iuz 0 ), ( 0 σ

σ 0 )), Bh = Ah. (64)

By (52) the tension of the Gauss map γ f , up to a non-zero multiple depending on
the f -induced metric, identifies with the mC-valued matrix

∂z̄ Am + [Bh, Am] =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 −A1 A2
0 0 0 −iB1 iB2
0 A1 iB1 0 0
0 A2 iB2 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

where the coefficients A1,A2,B1,B2 are given by

A1 = a1z̄ + σ̄a2 + uz̄b1, A2 = a2z̄ + σ̄a1 + uz̄b2,
B1 = b1z̄ + σ̄b2 + uz̄a1, B2 = b2z̄ + σ̄b1 + uz̄a2.
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By a straightforward calculation using (62) and Codazzi’s equations (4) we obtain

A1 = A2 = eu√
2
2Re{hz + σh},

B1 = B2 = eu√
2
2i Im{hz + σh},

Thus the Gauss map γ f is a harmonic map if and only if hz + σh = 0, which by (11)
is just the condition for f having parallel mean curvature vector field. We have thus
proved the following particular case of the characterization due to Ruh–Vilms of
submanifods with parallel mean curvature vector in riemannian space forms (Ruh and
Vilms 1970):

Lemma 5.1 Let f : � → S
4
1 be a conformally immersed marginally trapped surface.

Then the Gauss map γ f : � → G2(R
5
1) of f is harmonic if and only if f has parallel

mean curvature.

Inwhat followswe assume that the conformally immersedmarginally trapped f has
non-zero parallel mean curvature vector. Then the normal bundle ν( f ) is flat (Rahim
Elghanmi 1996) and we can assume that the normal (sub) frame {N1, N2} of the f -
adapted frame F : � → SO+(4, 1) is positively oriented and ∇⊥-parallel along
f .
Fixing a point x0 ∈ �̃ we integrate for each λ ∈ S

1 the differential equation

dFλ = Fλαλ, (65)

with initial condition Fλ(x0) = F(x0) ∈ H . We obtain a solution Fλ : �̃ →
SO+(4, 1), (hence a local solution around any point of�) which is called an extended
frame. According to Burstall and Pedit (1995) it is possible to choose the constants of
integration so that Fλ depends smoothly on λ ∈ S

1. In column notation,

Fλ = (Fλ
0 , Fλ

1 , Fλ
2 , Nλ

1 , Nλ
2 ).

Since α{λ=1} = α, the extended frame satisfies F {λ=1}(x) = F(x),∀x ∈ �̃. In par-

ticular N {λ=1}
1 = N1, and N {λ=1}

2 = N2, where {N1, N2} ⊂ �(ν( f )) is positively
oriented by assumption. Thus an elementary argument shows that {Nλ

1 , Nλ
2 } is posi-

tively oriented ∀λ ∈ S
1.

We define f λ := Fλ
0 = Fλe0, i.e. the first column of the extended frame Fλ. Then

f λ is a one parameter deformation of f since at λ = 1 we recover f : Fλ=1e0 =
F.e0 = F0 = f . We call { f λ, λ ∈ S

1} the associated family of the marginally trapped
surface f . From (58) and (65) we get

f λ
z := Fλ

z e0 = Fλ(λ−1Am+ Ah)e0 = λ−1 eu√
2
Fλ(e1 − ie2) = λ−1 eu√

2
(Fλ

1 − i Fλ
2 ),

(66)
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hence Fλ is adapted to f λ. From (66) we obtain:

〈 f λ
z , f λ

z 〉 =
〈

λ−1 eu√
2
(e1 − ie2), λ

−1 eu√
2
(e1 − ie2)

〉

= 0.

〈 f λ
z , f λ

z̄ 〉 = 〈Fλ(λ−1Am + Ah)e0, F
λ(λBm + Bh)e0〉

=
〈

λ−1 eu√
2
(e1 − ie2), λ

eu√
2
(e1 + ie2)

〉

= e2u . (67)

Thus for eachλ ∈ S
1, f λ is a conformally immersed surface (hence spacelike) inducing

the same conformal metric.
Consider the one-parameter family of maps goven by Ad(Fλ)E = Fλ

1 ∧ Fλ
2 . Since

the extended frame satisfies F {λ=1}(x) = F(x),∀x ∈ �̃, it follows that F {λ=1}
1 ∧

F {λ=1}
2 = F1 ∧ F2 = γ f . This shows that Ad(Fλ)E is a one parameter deformation

of γ f . Hence we define (γ f )
λ := Ad(Fλ)E , which is the associated family of the

harmonic map γ f .
Note that by (60) the Gauss map of f λ is given by γ f λ = −ie−2u f λ

z ∧ f λ
z̄ . Thus

from (66) it follows that (γ f )
λ = γ f λ .

Due to (αλ)
′
m = λ−1α′

m, (αλ)
′′
m = λα′′

m, and (αλ)h = αh, the one form αλ

satisfies Eq. (55) for any λ ∈ S
1. Thus each (γ f )

λ : � → G2(R
5
1) is harmonic and so

each f λ has parallel mean curvature vector.
We claim that f λ is a non-isotropic marginally trapped surface with non-zero mean

curvature vector for any λ ∈ S
1. Denote by

→
Hλ the mean curvature vector of f λ. Since

f λ is conformal and spacelike, it follows that

f λ
zz̄ = −e2u f λ + e2u

→
Hλ, (68)

hence from (6) we obtain

→
Hλ = e−2u〈 f λ

zz̄, N
λ
1 〉Nλ

1 − e−2u〈 f λ
zz̄, N

λ
2 〉Nλ

2 . (69)

On the other hand from (65) the structure equations of f λ are given by Fλ
z =

Fλ(λ−1Am + Ah), which is equivalent to the system

f λ
z = 1

λ

eu√
2
Fλ
1 − i

1

λ

eu√
2
Fλ
2 ,

∂z F
λ
1 = −1

λ

eu√
2
f λ − iuz F

λ
2 + 1

λ
a1N

λ
1 + 1

λ
a2N

λ
2 ,

∂z F
λ
2 = i

1

λ

eu√
2
f λ + iuz F

λ
1 + i

1

λ
b1N

λ
1 + i

1

λ
b2N

λ
2 ,

∂z N
λ
1 = −1

λ
a1F

λ
1 − i

1

λ
b1F

λ
2 + σNλ

1 ,

∂z N
λ
2 = 1

λ
a2F

λ
1 + i

1

λ
b2F

λ
2 + σNλ

2 , (70)
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from which we obtain

〈 f λ
zz̄, N

λ
1 〉 = −〈 f λ

z̄ , ∂z N
λ
1 〉 = (a1 − b1)

eu√
2

= e2uh,

〈 f λ
zz̄, N

λ
2 〉 = −〈 f λ

z̄ , ∂z N
λ
2 〉 = (b2 − a2)

eu√
2

= −e2uh.

Thus from equation (69) we obtain
→
Hλ = h(Nλ

1 + Nλ
2 ), hence hλ = h �= 0, which

shows that f λ is marginally trapped with non-zero mean curvature vector for every
λ ∈ S

1.
On the other hand since ξλ

1 = 〈 f λ
zz, N

λ
1 〉 and ξλ

2 = −〈 f λ
zz, N

λ
2 〉, then from (70) we

obtain

ξλ
1 = 〈 f λ

zz, N
λ
1 〉 = −〈 f λ

z , ∂z N
λ
1 〉 = λ−2 eu√

2
(a1 + b1) = λ−2ξ1,

ξλ
2 = −〈 f λ

zz, N
λ
2 〉 = 〈 f λ

z , ∂z N
λ
2 〉 = λ−2 eu√

2
(a2 + b2) = λ−2ξ2. (71)

Therefore the (2, 0) part of the second fundamental form of fλ is given by,

II λ(∂z, ∂z) = λ−2ξ1N
λ
1 + λ−2ξ2N

λ
2 . (72)

From the above expression results that Qλ = λ−2Q, where Qλ = 〈 f λ
zz, f λ

zz〉dz4.
Hence f λ is non-isotropic for everyλ ∈ S

1.We collect the above facts in the following,

Proposition 5.1 Let f : � → S
4
1 be a non-isotropic conformal marginally trapped

immersion with non-zero parallel mean curvature vector and Gauss map γ f . Let f λ

its associated family obtained by integration of (65), which is defined on a simply
connected open neighbourhood of each point of �. Then each member f λ is a non-
isotropic conformal immersion inducing the same conformal metric for any λ ∈ S

1

with non-zero parallel mean curvature vector. Moreover, the Gauss map of f λ is the
λ-deformation of the Gauss map of f , i.e. γ f λ = (γ f )

λ.

Next we describe the conformal invariants κλ, sλ and δ-differential of the associated
family f λ obtained above. First note that the Hopf quadratic differential q = (ξ1 −
ξ2)dz2 of f is never zero on � and is holomorphic by Lemma 4.2 since f has flat
normal bundle. Thus for any point x ∈ � there is a local coordinate z such that
q = cdz2, for a non-zero real constant c. By (31) κ is real in the same coordinate z
and so the null Gauss map G : � → S

3 of f is isothermic.
From (71) and (72) we obtain the Hopf differential of f λ:

qλ = λ−2cdz2 = λ−2q. (73)

Since hλ = h, from the above expression we obtain

δλ = hqλ = λ−2chdz2 = λ−2δ. (74)
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In polar form the Hopf differential qλ is given by, qλ = |c|eiθ(λ)dz2 =
λ−2|c|eiθdz2. Thus eiθ(λ) = λ−2eiθ so that if λ = eiϕ then

θ(λ) = θ − 2ϕ. (75)

Note that λ does not depend on z, an consequently ϕz = 0. Hence θ(λ)z = θz , and
θ(λ)zz = θzz . Taking this into account then formula (39) in terms of the conformal
invariants κλ, sλ and δλ becomes:

chλ−2 = ((u − iθ)z)
2 + (u − iθ)zz + sλ

2
. (76)

Combining the above equation with (39) gives the schwartzian derivative sλ of Gλ:

sλ = s + 2(λ−2 − 1)ch. (77)

Also from (32) κλ identifies with eu+iθ(λ)√
2

, thus from (75) we obtain

κλ = eu+i(θ−2ϕ)

√
2

= λ−2κ. (78)

A straightforward computation using (76), (77) and (78) shows that κλ, sλ, δλ obey
the fundamental equation (41) namely,

(κλ)z̄ z̄ + sλ
2

κλ = chλ−2κλ, ∀λ ∈ S
1,

in which chλ−2κλ = chκ , hence it is real valued for every λ ∈ S
1. Consequently

κλ, sλ obey the conformal Codazzi equation:

Im

(

(κλ)z̄ z̄ + sλ
2

κλ

)

= 0, ∀λ ∈ S
1.

Since f has parallelmean curvature vector, δ is holomorphic. Thus from (76), (77), (78)
it easily follows that κλ, sλ obey the conformal Gauss equation:

(sλ)z̄
2

= 3(κλ)z .κλ + κλ(κλ)z .

Sinceλ = 0 does not dependon z and δ is holomorphic, then δλ = λ−2δ is holomorphic
for any λ ∈ S

1. We have thus proved the following

Proposition 5.2 Let f λ be the associated family of a non-isotropicmarginally trapped
surface f : � → S

4
1with non-zeroparallelmean curvature vector. Then for anyλ ∈ S

1

the conformal invariants and δ-differential of f λ are given by

κλ = λ−2κ, sλ = s + 2(λ−2 − 1)ch, δλ = λ−2δ, (79)
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where q = cdz2 and δ = chdz2.
Moreover, the system consisting of (41) and the conformal Gauss and Codazzi

equations (17) is invariant under the spectral symmetry determined by (79).

Note that as consequence of (79) the members of the associated family f λ are
non-congruent, hence the deformation f �→ f λ is non-trivial. It also follows that the
isothermic condition is preserved by the spectral symmetry (79): if κ is real for some
coordinate z then in the new coordinate w = 1

λ
z κλ is real since κλdz2 = κdw2.

Remark 5.1 In Burstall et al. (2002) the authors obtain the following slightly different
spectral symmetry for the conformal Gauss and Codazzi equations of a constrained
Willmore surface ψ : � → S

3:

κλ = λκ, sλ = s + (λ2 − 1)η, ηλ = λ2η, (80)

where ηdz2 is an holomorphic quadratic differential satisfying κz̄ z̄ + s̄
2κ = Re(η̄κ).

5.2 The Calapso-Bianchi associated family of marginally trapped surfaces with
flat normal bundle

We construct here an integrable deformation of non-isotropic marginally trapped
surfaces with flat normal bundle which is related to the so-called Calapso-Bianchi
T-transform of isothermic surfaces in S3 (Burstall et al. 2002). The class of marginally
trapped surfaces with flat normal bundle in S

4
1 includes those with non-zero parallel

mean curvature vector and also the spacelike isothermic surfaces introduced by Wang
(2012).

Recall that a conformally immersed surface ψ : � → S
3 is isothermic if away

from umbilics, it can be conformally parameterized by its curvature lines. In terms of
its conformal invariants a surface ψ is isothermic if each point in � has a coordinate z
for which κ is real: κ = κ (Burstall et al. 2002; Ma 2005). In this case the conformal
Gauss and Codazzi’s equations (17) away from umbilic points reduce to

sz̄ = 4(κ2)z,

Im

(

κz̄ z̄ + 1

2
s̄κ

)

= 0. (81)

Thus away from umbilic points κ is non-zero and so both equations combine into
Calapso’s equation: 
(

κxy
κ

)+ 8(κ2)xy = 0. The Calapso-Bianchi T-transform acts on
an isothermic surface ψ : � → S

3 by deforming the schwartzian s and keeping κ

unchanged:
st = s + t, κt = κ, t ∈ R, (82)

thus giving rise to the so-called associated family ψt (Burstall et al. 2002).
Let f : � → S

4
1 be a non-isotropic marginally trapped surface with flat normal

bundle. Then by Lemma 4.2 for every point x ∈ � there is a local coordinate z such
that q = cdz2 for a non-zero real constant c. Thus κ is real in the same coordinate and
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so the null Gauss map G : � → S
3 of f is isothermic. Conversely, if G is isothermic,

then κ and so q is real in some coordinate z. Hence f has flat normal bundle if and
only if q is constant i.e. q = cdz2 for some non-zero real constant c.

The structure equations of f reads (3) in which ξ1 = ξ + c, ξ2 = ξ , σ = 0 and
h1 = h2 = h, where the positively oriented orthonormal frame {N1, N2} is ∇⊥-
parallel. The compatibility equations (4) reduce in this case to

2uz̄z = −e2u + e−2u(2cRe(ξ) + c2),

ξz̄ = e2uhz .

0 = Im((ξ + c)ξ), (83)

where 2ξc + c2 �= 0 since f is non-isotropic. If h is a non-zero constant, then f has
non-zero parallel mean curvature vector field and its null Gauss map G : � → S

3 is
isothermic and constrainedWillmore. On the other hand if h is a non-constant function
satisfying (83), then f has flat normal bundle and non-parallel mean curvature vector
field.

Since our considerations are local we consider an f -adapted frame F =
(F0, F1, F2, N1, N2) ∈ SO+(4, 1) defined on the universal covering space �̃. Then
the structure equations of f read Fz = FA, where the coefficients of the matrix A
in (61) are given in this case by

a1 = e−u(ξ+c)+euh√
2

, b1 = e−u(ξ+c)−euh√
2

, σ = 0,

a2 = e−uξ+euh√
2

, b2 = e−uξ−euh√
2

.

We now introduce a one-parameter family of matrices given by

At =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 − eu√
2
i eu√

2
0 0

eu√
2

0 iuz −at1 at2
−i eu√

2
−iuz 0 −ibt1 ibt2

0 at1 ibt1 0 0
0 at2 ibt2 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Bt = At ∈ so(4, 1)C, t ∈ R, (84)

with coefficients
at1 = e−u(ξ+c)+euht√

2
, bt1 = e−u(ξ+c)−euht√

2
,

at2 = e−uξ+euht√
2

, bt2 = e−uξ−euht√
2

,
(85)

where
ht := h + t

2c
, c ∈ R

×, t ∈ R. (86)

Note that for t = 0 we recover A, i.e. At=0 = A.

Lemma 5.2 Define a one parameter family of so(4, 1)-valued one-forms by

αt := Atdz + Btdz̄, t ∈ R. (87)
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Then αt coincides with α for t = 0 and it satisfies the Maurer–Cartan equation

dαt + 1

2
[αt ∧ αt ] = 0, ∀t ∈ R, (88)

if and only if u, ξ, h satisfy (83).

Proof Since Bt = At then αt is so(4, 1)-valued for every t ∈ R. On the other hand
dαt + 1

2 [αt ∧ αt ] = 0 is equivalent to (At )z̄ − (Bt )z = [At , Bt ] which in turn is
equivalent to

2uz̄z = −e2u + e−2u(2cRe(ξ) + c2),

ξz̄ = e2u(ht )z .

0 = Im((ξ + c)ξ).

Since (ht )z = hz for any t ∈ R, the above system is invariant under the symmetry (86)
and it is equivalent to (83). ��

Since we work locally, we may transfer the situation to the universal covering
space �̃ of � (note that the case �̃ = S

2 is excluded, otherwise being q holomorphic
it would vanish). Thuswe can integrate theMaurer–Cartan equation (88) on �̃ for each
t , obtaining a solution Ft : �̃ → SO+(4, 1), which is unique up to left translation by
a constant element in SO+(4, 1). Thus Ft satisfies

(Ft )−1dFt = αt , F0 = F, (89)

since α0 = α. According to Burstall and Pedit (1995) and Ferus and Pedit (1996) it
is possible to choose the constants of integration so that t �→ Ft (x) is C∞ for every
x ∈ �̃. Denote by Ft := (Ft

0, F
t
1, F

t
2, N

t
1, N

t
2) in column notation. Since N 0

2 = N2 is
future pointing, then by continuity Nt

2 is future pointing for every t . Moreover, since
{N 0

1 , N 0
2 } = {N1, N2} is positively oriented, then an elementary continuity argument

shows that {Nt
1, N

t
2} is positively oriented for every t ∈ R.

Define f t := Ft .e0, the first column of Ft , then

f tz = Ft
z e0 = Ft At .(e1 − ie2) = eu√

2
Ft (e1 − ie2), (90)

from which we compute

〈 f tz , f tz̄ 〉 = e2u

2
〈Ft (e1 − ie2), F

t (e1 + ie2)〉 = e2u,

〈 f tz , f tz 〉 = e2u

2
〈Ft (e1 − ie2), F

t (e1 − ie2)〉 = 0,

hence f t is a conformal spacelike immersion which induces the same (conformal)
metric for any t . Since f t=0 = f , f t is a one parameter deformation of f . Also
from (89) and (90) we obtain
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f tzz̄ = uz̄ f
t
z + eu√

2
Ft B(e1 − ie2), f tzz = uz fz + eu√

2
Ft A(e1 − ie2),

which, from the structure of the matrices At , Bt , become,

f tzz̄ = −e2u f t + e2uht (Nt
1 + Nt

2), f tzz = 2uz f
t
z + (ξ + c)Nt

1 + ξNt
2. (91)

Hence the mean curvature vector of f t is given by
→
Ht = ht (Nt

1 + Nt
2) and so f t is

marginally trapped. Also from (91) we see that

〈 f tzz, f tzz〉 = (ξ + c)2 − ξ2 = 2ξc + c2 = 〈 fzz, fzz〉. ∀t ∈ R,

hence f t is non-isotropic. On the other hand Ft is adapted to f t since Ft
z = Ft At .

From this equation we extract

∂z N
t
1 = −at1F

t
1 − ibt1F

t
2, ∂z N

t
2 = at2F

t
1 + ibt2F

t
2,

which implies that f t has flat normal bundle for every t and also that {Nt
1, N

t
2} is a

parallel orthonormal frame with respect to the normal connection ∇⊥
t of ν( f t ).

Equation (41) relating the conformal invariants and the δ differential of f reads

κz̄ z̄ + s̄

2
κ = chκ, c ∈ R

×, δ = chdz2. (92)

The deformation family f t obtained above is locally defined on� and is related to (82)
hence we call f �→ f t the Calapso-Bianchi transformation of the marginally trapped
surface f .

Since (st )z̄ = sz̄ , then by Theorem 3.1 κ, st determine a unique (up to Moebius
transformations of the sphere) conformally immersed isothermic surface Gt : � →
S
3. Since for t = 0 we recover s in (82), Gt is the associated family of G or the

T-transform of the isothermic surface G : � → S
3. We claim that Gt is the null Gauss

map of f t . In fact, from (91) it follows that q = cdz2 is the Hopf differential of f t .
Since f t induce the same conformal metric for all t , then θ in formula (32) must be
an integer multiple of 2π , and so κ = eu√

2
is the (common) normal Hopf differential

of the null Gauss map of all f t . Inserting (82) into (92) yields,

κz̄ z̄ + st
2

κ = c

(

h + t

2c

)

= chtκ, δt = chtdz2, (93)

where δt = chtdz2 is just the delta differential of f t . Thus the above equation is
the evolution of (92) and so κ, st are the conformal invariants of the null Gauss map
of f t . Thus Gt has conformal invariants κ, st and so it coincides up to a Moebius
transformation of S3 with the null Gauss map of f t which is isothermic since κ is real.

The transformation f �→ f t also preserves marginally trapped surfaces which are
isothermic or have parallel second fundamental form. For instance if f is isothermic
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then for each x ∈ � there is a local coordinate z for which � = ξ1N1dz2 + ξ2N2dz2

is real valued, that is ξ1, ξ2 are real valued. Thus by Ricci’s equation f has flat normal
bundle and so the Hopf differential q is holomorphic by Lemma 4.2 and so q = cdz2

for a non-zero real constant c, with ξ1−ξ2 = c. Hence the function ξ in (83) satisfying
ξ1 = ξ + c, ξ2 = ξ must be also real valued. Thus from (85) it follows that the normal
vector Hopf differential �t of f t is also real valued in the same coordinate z, which
shows that f t is isothermic for any t ∈ R.

On the other hand if f has non-zero parallel mean curvature vector then it has flat
normal bundle by Rahim Elghanmi (1996). Thus there is a local positive ∇⊥-parallel
orthonormal frame {N1, N2} ⊂ �(ν( f )) such that 0 = ∇⊥

∂z

→
H = hz(N1 + N2), thus

h is constant. Since ht is defined by (86) it satisfies (ht )z = hz , then (ht )z = 0 for
all t ∈ R which shows that f t has (non-zero) parallel mean curvature vector for any
t ∈ R. We summarize our discussion in the following

Theorem 5.1 Let f : � → S
4
1 be a non-isotropic conformal marginally trapped

immersion with flat normal bundle. Let f t : �̃ → S
4
1 be the Calapso-Bianchi defor-

mation family of f obtained by integration of (89). Then on� each f t is locally defined
conformal non-isotropic marginally trapped immersion with flat normal bundle whose
null Gauss map Gt is isothermic for any t ∈ R.

Moreover, the transformation f �→ f t preserves isothermic surfaces and surfaces
with non-zero parallel mean curvature vector.

5.3 An extended deformation

Non-isotropic marginally trapped conformal immersed surfaces in S
4
1 with non-zero

parallel mean curvature vector have flat normal bundle (Rahim Elghanmi 1996) and
have isothermic and constrainedWillmore null Gauss maps into S3 by Theorem 4.2. In
the previous sectionswe considered two different one parameter deformations for such
surfaces, namely f λ, λ ∈ S

1 and f t , t ∈ R. Motivated by Burstall et al. (2002) we
show that it is possible to unify both deformations by defining an (extended) action of
C−{0} on the set of non-isotropic marginally trapped surfaces with non-zero parallel
mean curvature vector.

Let f : � → S
4
1 be a non-isotropic conformally immersed marginally trapped sur-

face with non-zero parallel mean curvature vector and κ, s be the conformal invariants
of f , δ-differential δ = chdz2, with h = const �= 0 and quadratic Hopf differential
q = cdz2, for real constant c �= 0.

We extend the symmetry (79) for λ ∈ C − {0} by defining

κλ = |λ|2λ−2κ, sλ = s + 2(λ−2 − 1)ch, δλ = λ−2δ. (94)

Thus for |λ| = 1 above we recover (79). Moreover, since chκ is real, a straightfor-
ward calculation shows that κλ, sλ, δλ above satisfy (41) and the conformal Gauss and
Codazzi’s equation (17) for every λ ∈ C−{0}. Thus κλ, sλ, δλ determine the extended
associated family f λ which for |λ| = 1 restricts to the associated family obtained in
the previous section.
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We briefly describe below the deformation given in (94) to a non-isotropic mar-
ginally trapped torus in S

4
1 with non-zero parallel mean curvature. The image of the

null Gauss map in this case is an isothermic constrainedWillmore torus in S3 and by a
result of Richter (1997) (see also Burstall et al. 2002) it can be immersed as a surface
of constant mean curvature in some riemannian space form.

Let f : � → S
4
1 be a conformal non-isotropic marginally trapped immersion with

non-zero parallel mean curvature then Q = 〈 fzz, fzz〉dz4 is holomorphic and non-
zero. Away from the isolated zeros of Q it is possible to choose a local coordinate z
such that Q = dz4, or 〈 fzz, fzz〉 = 1. When � = T 2 is a 2-torus then Q has no zeros
at all (otherwise Q would be identically zero). Thus Q = dz4, where z is a global
coordinate on the universal covering C of T 2 which determines a bi-holomorphism
T 2 ∼= C/� for some lattice �0 ⊂ C. We choose a positively oriented orthonormal
lorentzian frame {N1, N2} ⊂ �(ν( f )) such that

fzz = 2uz fz + cosh(C)N1 + sinh(C)N2,

where C = ρ + i� is a complex function. The new positively oriented lorentzian
frame {N ′

1, N
′
2} given by

N ′
1 = cosh(ρ)N1 + sinh(ρ)N2,

N ′
2 = sinh(ρ)N1 + cosh(ρ)N2,

has structure function σ ′ = 0 and so {N ′
1, N

′
2} is ∇⊥-parallel along f . Also since

fzz = 2uz fz + cos(�)N ′
1 + i sin(�)N ′

2,

then Ricci’s equation now becomes 0 = cos(�) sin(�), of which � = 0 is a solution.
For simplicity we drop the primes and keep denoting by {N1, N2} this new∇⊥-parallel
normal frame. The structure equations of f become

fzz = 2uz fz + N1,

fz̄z = −e2u f + e2uh(N1 + N2),

∂z N1 = −h fz − e−2u fz̄,

∂z N2 = h fz, 0 �= h = const. (95)

with compatibility given by the Sinh–Gordon equation 2uz̄z = −e2u +e−2u , of which
u : C → R is a doubly periodic solutionwith respect to the lattice�0 ⊂ C. Solutions to
the Sinh–Gordon equation are obtained by applying the finite-gap integration method
from theta functions defined on auxiliary hyperelliptic Riemann surfaces which arise
from inverse scattering theory (Bobenko 1991).

Since the mean curvature vector is lightlike and non-zero the surface f cannot lie in
a copy of S3,H3,S31 immersed as a totally geodesic hypersurface into S

4
1. Moreover,

(N1 + N2)z = −e−2u fz̄ implies that f cannot lie in any singular hypersurface of S41.
From (95) the Hopf differential of f is given by q = dz2, hence θ must be an integer
multiple of 2π in (32) and so κ = eu√

2
which says that G : T 2 → S

3 is an isothermic
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and constrained Willmore surface since h is a non-zero constant. The fundamental
equation (41) becomes κz̄ z̄ + s̄

2κ = hκ, δ = hdz2.

We see from (94) that κλ = |λ|2λ−2 eu√
2
. Also from (33) it follows that the f λ-

induced metric has conformal parameter u for every λ ∈ C−{0}, thus all the surfaces
in the extended family have the same induced metric. Using formula (32) we obtain
the Hopf quadratic differential of f λ:

qλ = λ−2|λ|2dz2. (96)

Thus since δλ = hλqλ = λ−2δ = λ−2hdz2, then the δ-differential of f λ is given
by δλ = λ−2|λ|2( h

|λ|2 )dz
2. Thus the marginally trapped torus f λ has mean curvature

function hλ = h
|λ|2 which is a non-zero constant since λ does not depend on z. Hence

f λ has non-zero parallel mean curvature vector and so its null Gauss map Gλ is
constrained Willmore. In the new (rotated) coordinate w := |λ|

λ
z, κλ is real with

respect to w since κλdz2 = κdw2 and δλ = h
|λ|2 dw2, hence Gλ is isothermic for

every λ ∈ C − {0}. Note that for t = 2h( 1
|λ|2 − 1) we recover the Calapso-Bianchi

transformation f t of the marginally trapped torus f .
The structure equations of f λ in the extended frame Fλ = ( f λ, f λ

z , f λ
z̄ , Nλ

1 , Nλ
2 ),

λ ∈ C − {0}, are thus given by

f λ
zz = 2uz f

λ
z + λ−2|λ|2Nλ

1 ,

f λ
z̄z = −|λ|4e2u f λ + |λ|4e2u h

|λ|2 (Nλ
1 + Nλ

2 ),

∂z N
λ
1 = − h

|λ|2 f λ
z − |λ|−4e−2u f λ

z̄ ,

∂z N
λ
2 = h

|λ|2 fz . (97)
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