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Abstract We study nonlinear elliptic equations in divergence form

divA(x,Du) = div G.

When A has linear growth in Du, and assuming that x �→ A(x, ξ) enjoys Bα
n
α
,q

smooth-

ness, local well-posedness is found in Bα
p,q for certain values of p ∈ [2, n

α
) and q ∈ [1, ∞].

In the particular case A(x, ξ) = A(x)ξ , G = 0 and A ∈ Bα
n
α
,q
, 1 ≤ q ≤ ∞, we obtain

Du ∈ Bα
p,q for each p < n

α
. Our main tool in the proof is a more general result, that

holds also if A has growth s − 1 in Du, 2 ≤ s ≤ n, and asserts local well-posedness
in Lq for each q > s, provided that x �→ A(x, ξ) satisfies a locally uniform V MO

condition.
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1 Introduction

The main purpose of this paper consists of analyzing the extra fractional differentiability of
weak solutions of the following nonlinear elliptic equations in divergence form,

divA(x,Du) = divG in �, (1.1)

where � ⊂ R
n is a domain, u : � → R, G : � → R

n, and A : � × R
n → R

n is a
Carathéodory function with linear growth. This means that there are constants �, L, ν > 0
and 0 ≤ μ ≤ 1 such that

(A1) 〈A(x, ξ) − A(x, η), ξ − η〉 ≥ ν|ξ − η|2,
(A2) |A(x, ξ) − A(x, η)| ≤ L|ξ − η|,
(A3) |A(x, ξ)| ≤ �(μ2 + |ξ |2) 1

2 ,

for every ξ, η ∈ R
n and for a.e. x ∈ �.

It is clear that no extra differentiability can be expected for solutions, even ifG is smooth,
unless some assumption is given on the x-dependence of A. Thus, we wish to find condi-
tions on A under which fractional differentiability assumptions on G transfer to Du with
no losses in the order of differentiation.

The regularity theory for elliptic equations goes back to the seminal works by de Giorgi,
Nash and Moser on Hölder continuity of weak solutions. Later on, for linear equations,
Meyers found the existence of a number p0(n, ν, L, �) such that a priori Lp estimates for
the gradient hold whenever p′

0 < p < p0. In both cases, no regularity for the coefficients is
needed (other than measurability). Also, both the Cα and the Lp theory have been extended
to nonlinear Carathéodory functions A not necessarily having linear growth (we refer the
interested reader to the monographs [6] and [8] for a complete treatment of the subject).
If one seeks for higher differentiability results, then extra assumptions are needed on the
coefficients. The classical Schauder estimates are a typical example of this fact, and can be
used to prove that Hölder regularity on the independent term G transfers to the gradient Du

in a nice way, provided the dependence x �→ A(x, ξ) is also Hölder. A very precise and
unified description of such phenomenon can be found at Kuusi-Mingione [20].

Even though there is an extensive literature on the regularity theory for equations like
(1.1), recent works in the planar situation, n = 2, have shown a renovated interest in
determining the higher differentiability of solutions in terms of that of the datum and the
coefficients. So far, especial attention has been driven to the case of fractional Sobolev
spaces Wα,p. It turns out that remarkable differences are appreciated, depending on the
quantity αp:

• If αp > 2, then G ∈ Wα,q implies Du ∈ Wα,q whenever q ≤ p (see e.g. references
[5] and [19]).

• If αp = 2, then G ∈ Wα,q implies Du ∈ Wα,q for every q < p, but not if q = p.

The reason is that coefficients in W
α, 2

α

loc do not necessarily imply bounded derivative
solutions. Precise results in this direction are given in [3] (for α = 1) or [2] (for 0 <

α < 1).
• If αp < 2, then G ∈ Wα,q implies Du ∈ Wα,q for q < q0 where q0 depends on the

ellipticity constants, and is such that q0 < p. See for instance [3] for the case α = 1,
and [4] for 0 < α < 1.

The results mentioned above refer to the planar Beltrami equation, which is equivalent to
A(x, ξ) = A(x) ξ for some A(x) which is symmetric and has determinant 1.
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It turns out that similar phenomena seem to occur in higher dimensions. Indeed, recent
developments for nonlinear equations suggest that linearity should not be a restriction, as
appropriate counterparts hold even if A has superlinear growth, see for instance [7], [22]
and [23]. In these works, higher differentiability is obtained from a pointwise condition on
the partial map A. More precisely, for Carathéodory functions A with linear growth, it is
assumed that there exists a non negative function g ∈ Ln

loc(�) such that

|A(x, ξ) − A(y, ξ)| ≤ |x − y| (g(x) + g(y)) (μ2 + |ξ |2) 1
2 , (1.2)

for almost every x, y ∈ �, and every ξ ∈ R
n. Under this condition, solutions to Eq. 1.1 with

G = 0 are shown in [23] to be such that Du ∈ W
1,p
loc for every p < 2. As a first fractional

counterpart to this result, instead of Eq. 1.2 one can assume that there is g ∈ L
n
α

loc(�) such
that

|A(x, ξ) − A(y, ξ)| ≤ |x − y|α (g(x) + g(y)) (μ2 + |ξ |2) 1
2 , (1.3)

for almost every x, y ∈ �, and every ξ ∈ R
n. Such assumption, together with a Hölder

continuity of the coefficients, has been already employed in [18], where various higher
integrability results are obtained. It turns out that one gets improved regularity for solutions
measured in terms of the Besov spaces Bα

p,q .

Theorem 1 Let 0 < α < 1. Assume that A satisfies (A1), (A2), (A3), and that Eq. 1.3
holds for some g ∈ L

n
α . There exists p0 = p0(n, ν, �) > 2 such that if u ∈ W

1,2
loc is a weak

solution of
divA(x,Du) = 0

then Du ∈ Bα
p,∞, locally, whenever 2 ≤ p < min{ n

α
, p0}. If A(x, ξ) = A(x)ξ then

2 ≤ p < n
α
suffices.

See Section 2 for the definition of Bα
p,q and the meaning of locally. Theorem 1 holds

even for some values p > 2, that is, different than the natural summability for A. The
reason for this is a non-standard version of the Caccioppoli inequality, see Lemma 14 in
Section 2. We’d like to mention that in [21] a Besov-Nikoski estimate for the gradient of the
solutions with an higher integrability exponent p > 2 is obtained through the application of
the Gehring Lemma to the difference quotients.

At the same time, Theorem 1 seems to be in contrast with the results at [23]. Indeed,
condition (1.2) fully describes equations with coefficients in the Sobolev space W 1,n, that
is, the Triebel-Lizorkin space F 1

n,2 (see [17] for details), and so in [23] the Triebel-Lizorkin
scale is nicely transferred from coefficients to solutions. Nevertheless, it is worth mention-
ing here that there is a jump between Eqs. 1.2 and 1.3, since Eq. 1.3 says that A ∈ Fα

n
α
,∞

(see [17] for details).
Unfortunately, the method does not seem to extend to the existing counterparts of Eq. 1.3

that characterize coefficients in Fα
n
α
,q

for finite values of q. Somewhat surprisingly, the

Besov setting fits better in this context. To be precise, given 0 < α < 1 and 1 ≤ q ≤ ∞ we
say that (A4) is satisfied if there exists a sequence of measurable non-negative functions
gk ∈ L

n
α (�) such that ∑

k

‖gk‖q

L
n
α (�)

< ∞,

and at the same time

|A(x, ξ) − A(y, ξ)| ≤ |x − y|α (gk(x) + gk(y)) (1 + |ξ |2) 1
2
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for each ξ ∈ R
n and almost every x, y ∈ � such that 2−k ≤ |x − y| < 2−k+1. We will

shortly write then that (gk)k ∈ �q(L
n
α ). If A(x, ξ) = A(x)ξ and � = R

n then (A4) says
that the entries of A belong to Bα

n
α
,q
, see [17, Theorem 1.2]. Under (A4), we can prove the

following result.

Theorem 2 Let 0 < α < 1 and 1 ≤ q ≤ ∞, and assume that A satisfies
(A1), (A2), (A3), (A4). There exists a number p0 = p0(n, ν, �) > 2 such that if u ∈
W

1,2
loc (�) is a weak solution of

divA(x,Du) = 0

then Du ∈ Bα
p,q provided that 2 ≤ p < min{ n

α
, p0}. If A(x, ξ) = A(x)ξ then 2 ≤ p < n

α

suffices.

Theorem 2 extends Theorem 1, because Eq. 1.3 implies (A4) (indeed Fα
n
α
,∞ ⊂ Bα

n
α
,∞).

The situation changes drastically if one looks at the inhomogeneous Eq. 1.1. Difficulties
appear mainly with the third index q, due to the fact that if 1 ≤ p < n

α
and p∗

α = np
n−αp

then

the embedding Bα
p,q ⊂ Lp∗

α only holds if 1 ≤ q ≤ p∗
α , and fails otherwise. We obtain the

following result.

Theorem 3 Let 0 < α < 1, and 1 ≤ q ≤ ∞. Assume that A satisfies
(A1), (A2), (A3), (A4). There exists a number p0 = p0(n, ν, �) > 2 such that the
implication

G ∈ Bα
p,q ⇒ Du ∈ Bα

p,q

holds locally, provided that max{p′
0,

nq
n+αq

} < p < min{ n
α
, p0} and u, G satisfy (1.1).

The above theorem is sharp, in the sense that one cannot expect Du to belong to a Besov
space B

β

p′,q ′ for any β > α (as can be seen from the constant coefficient setting). Moreover,
our arguments also show that the restriction p′

0 < p < p0 can be removed if A is linear in
the gradient variable. In fact, we have the following

Theorem 4 Let 0 < α < 1 and 1 ≤ q ≤ ∞, and assume that A(x, ξ) = A(x)ξ satisfies
(A1), (A2), (A3). Suppose that the entries of A(x) belong to Bα

n
α
,q
. Then the implication

G ∈ Bα
p,q ⇒ Du ∈ Bα

p,q

holds locally, provided that max{1, nq
n+αq

} < p < n
α
and u, G satisfy (1.1).

We do not know if Theorems 2, 3 and 4 remain true in the Triebel-Lizorkin setting, that
is, replacing �q(L

n
α ) by L

n
α (�q) and Bα

p,q by Fα
p,q .

Theorems 1, 2, 3 and 4 rely on the basic fact that the Besov spaces Bα
n
α
,q
and the Triebel-

Lizorkin space Fα
n
α
,∞ continuously embed into the V MO space of Sarason (e.g. [11, Prop.

7.12]). Linear equations with V MO coefficients are known to have a nice Lp theory (see
[12] for n = 2 or [14] for n ≥ 2). A first nonlinear growth counterpart was found in
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[15] for A(x, ξ) = 〈A(x)ξ, ξ 〉s−2 A(x)ξ , 2 ≤ s ≤ n. Given s ∈ [2, n], we say that A :
�×R

n → R
n is a Carathéodory function of growth s − 1 if there are constants L, �, ν > 0

and 0 ≤ μ ≤ 1 such that

(A1) 〈A(x, ξ) − A(x, η), ξ − η〉 ≥ ν(μ2 + |ξ |2 + |η|2) s−2
2 |ξ − η|2,

(A2) |A(x, ξ) − A(x, η)| ≤ L(μ2 + |ξ |2 + |η|2) s−2
2 |ξ − η|, and

(A3) |A(x, ξ)| ≤ �(μ2 + |ξ |2) s−1
2 ,

The following result is our main tool for proving Theorems 1, 2, 3 and 4.

Theorem 5 Let 2 ≤ s ≤ n, and q > s. Assume that (A1), (A2), (A3) hold, and also that
x �→ A(x, ξ) is locally uniformly in V MO. If u is a weak solution of

divA(x,Du) = div(|G|s−2G) (1.4)

with G ∈ L
q
loc, then Du ∈ L

q
loc. Moreover, there exists a constant λ > 1 such that the

Caccioppoli inequality

 
B

|Du|q ≤ C(n, λ, ν, �, L, s, q)

(
1 + 1

|B|q/n

 
λB

|u|q +
 

λB

|G|q
)

holds for any ball B such that λB ⊂ �.

See Section 3 for the precise definition of locally uniformly VMO. The proof of Theo-
rem 5 is inspired by that of [15], although now new technical difficulties arise from the fully
nonlinear structure of A. The result has its own interest, especially for two reasons. First,
ξ �→ A(x, ξ) is not assumed to be C1-smooth. Second, the allowed independent terms do
not restrict to finite measures. Under these assumptions many interesting bounds on the size
and the oscillations of the solutions and gradients are established in [19] and [20]. Unfor-
tunately, and in contrast to the linear situation, this time the lack of self-adjointness is an
obstacle to extend the result for values q ∈ (1, s).

The paper is structured as follows. In Section 2 we give some preliminaries on Harmonic
Analysis. In Section 3 we prove Theorem 5. In Section 4 we prove Theorem 1 as it is
illustrative for proving Theorem 2 later. In Section 5 we prove Theorems 2, 3 and 4.

2 Notations and Preliminary Results

In this paper we follow the usual convention and denote by c a general constant that may
vary on different occasions, even within the same line of estimates. Relevant dependencies
on parameters and special constants will be suitably emphasized using parentheses or sub-
scripts. The norm we use on R

n will be the standard euclidean one and it will be denoted
by | · |. In particular, for vectors ξ , η ∈ R

n we write 〈ξ, η〉 for the usual inner product

of ξ and η, and |ξ | := 〈ξ, ξ〉 1
2 for the corresponding euclidean norm. In what follows,

B(x, r) = Br(x) = {y ∈ R
n : |y − x| < r} will denote the ball centered at x of radius r .

We shall omit the dependence on the center and on the radius when no confusion arises.

2.1 Besov-Lipschitz Spaces

Given h ∈ R
n and v : Rn → R, let us denote τhv(x) = v(x + h) and �hv(x) = v(x +

h) − v(x). As in [24, Section 2.5.12], given 0 < α < 1 and 1 ≤ p, q < ∞, we say that v
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belongs to the Besov space Bα
p,q(Rn) if v ∈ Lp(Rn) and

‖v‖Bα
p,q (Rn) = ‖v‖Lp(Rn) + [v]Ḃα

p,q (Rn) < ∞
where

[v]Ḃα
p,q (Rn) =

(ˆ
Rn

(ˆ
Rn

|v(x + h) − v(x)|p
|h|αp

dx

) q
p dh

|h|n
) 1

q

< ∞

Equivalently, we could simply say that v ∈ Lp(Rn) and �hv
|h|α ∈ Lq

(
dh
|h|n ; Lp(Rn)

)
. As

usually, if one simply integrates for h ∈ B(0, δ) for a fixed δ > 0 then an equivalent norm
is obtained, because

(ˆ
{|h|≥δ}

(ˆ
Rn

|v(x + h) − v(x)|p
|h|αp

dx

) q
p dh

|h|n
) 1

q

≤ c(n, α, p, q, δ) ‖v‖Lp(Rn)

Similarly, we say that v ∈ Bα
p,∞(Rn) if v ∈ Lp(Rn) and

[v]Ḃα
p,∞(Rn) = sup

h∈Rn

(ˆ
Rn

|v(x + h) − v(x)|p
|h|αp

dx

) 1
p

< ∞
Again, one can simply take supremum over |h| ≤ δ and obtain an equivalent norm. By con-
struction, Bα

p,q(Rn) ⊂ Lp(Rn). One also has the following version of Sobolev embeddings
(a proof can be found at [11, Prop. 7.12]).

Lemma 6 Suppose that 0 < α < 1.

(a) If 1 < p < n
α
and 1 ≤ q ≤ p∗

α then there is a continuous embedding Bα
p,q(Rn) ⊂

Lp∗
α (Rn).

(b) If p = n
α
and 1 ≤ q ≤ ∞ then there is a continuous embedding Bα

p,q(Rn) ⊂
BMO(Rn).

Given a domain � ⊂ R
n , we say that v belongs to the local Besov space Bα

p,q,loc if
ϕ v belongs to the global Besov space Bα

p,q(Rn) whenever ϕ belongs to the class C∞
c (�) of

smooth functions with compact support contained in �. The following Lemma is an easy
exercise.

Lemma 7 A function v ∈ L
p
loc(�) belongs to the local Besov space Bα

p,q,loc if and only if
∥∥∥∥
�hv

|h|α
∥∥∥∥

Lq
(

dh
|h|n ;Lp(B)

) < ∞

for any ball B ⊂ 2B ⊂ � with radius rB . Here the measure dh
|h|n is restricted to the ball

B(0, rB) on the h-space.

Proof Let us fix a smooth and compactly supported test function ϕ. We have the pointwise
identity

�h(ϕv)(x)

|h|α = v(x + h)
�hϕ(x)

|h|α + �hv(x)

|h|α ϕ(x).

It is clear that ∣∣∣∣v(x + h)
�hϕ(x)

|h|α
∣∣∣∣ ≤ |v(x + h)| ‖∇ϕ‖∞ |h|1−α



Fractional Differentiability for Solutions of Nonlinear Elliptic Equations 409

and therefore one always has �hϕ
|h|α ∈ Lq

(
dh
|h|n ; Lp(Rn)

)
. As a consequence, we have the

equivalence

ϕv ∈ Bα
p,q(Rn) ⇐⇒ �hv

|h|α ϕ ∈ Lq

(
dh

|h|n ;Lp(Rn)

)
.

However, it is clear that �hv
|h|α ϕ ∈ Lq

(
dh
|h|n ; Lp(Rn)

)
for each ϕ ∈ C∞

c (�) if and only if the

same happens for every ϕ = χB and every ball B ⊂ 2B ⊂ �. The claim follows.

As in [24, Section 2.5.10], we say that a function v : Rn → R belongs to the Triebel-
Lizorkin space Fα

p,q(Rn) if v ∈ Lp(Rn) and

‖v‖Fα
p,q (Rn) = ‖v‖Lp(Rn) + [v]Ḟ p,q

α (Rn) < ∞,

where

[v]Ḟ p,q
α (Rn) =

(ˆ
Rn

(ˆ
Rn

|v(x + h) − v(x)|q
|h|n+αq

dh

) p
q

dx

) 1
p

Equivalently, we could simply say that v ∈ Lp(Rn) and �hv
|h|α ∈ Lp

(
dx; Lq( dh

|h|n )
)
.

It turns out that Besov-Lipschitz and Triebel-Lizorkin spaces of fractional order α ∈
(0, 1) can be characterized in pointwise terms. Given a measurable function v : R

n →
R, a fractional α-Hajlasz gradient for v is a sequence (gk)k of measurable, non-negative
functions gk : Rn → R, together with a null set N ⊂ R

n, such that the inequality

|v(x) − v(y)| ≤ |x − y|α (gk(x) + gk(y))

holds whenever k ∈ Z and x, y ∈ R
n \N are such that 2−k ≤ |x − y| < 2−k+1. We say that

(gk) ∈ �q(Z;Lp(Rn)) if

‖(gk)k‖�q (Lp) =
(

∑

k∈Z
‖gk‖q

Lp(Rn)

) 1
q

< ∞.

Similarly, we write (gk) ∈ Lp(Rn; �q(Z)) if

‖(gk)k‖Lp(�q ) =
(ˆ

Rn

‖(gk(x))k‖p

�q(Z)
dx

) 1
p

< ∞.

The following result was proven in [17].

Theorem 8 Let 0 < α < 1, 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Let v ∈ Lp(Rn).

1. One has v ∈ Bα
p,q(Rn) if and only if there exists a fractional α-Hajlasz gradient (gk)k ∈

�q(Z;Lp(Rn)) for v. Moreover,

‖v‖Bα
p,q (Rn) � inf ‖(gk)k‖�q (Lp)

where the infimum runs over all possible fractional α-Hajlasz gradients for v.
2. One has v ∈ Fα

p,q(Rn) if and only if there exists a fractional α-Hajlasz gradient (gk)k ∈
Lp(Rn; �q(Z)) for v. Moreover,

‖v‖Fα
p,q (Rn) � inf ‖(gk)k‖Lp(�q )

where the infimum runs over all possible fractional α-Hajlasz gradients for v.
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2.2 Nonlinear Elliptic Equations in Divergence Form

This section is devoted to recall some fundamentals results of L
p
loc-theory for solutions of

nonlinear elliptic equations in divergence form that we shall use in what follows. Our first
result is a very well known higher integrability property, that we state in a version suitable
for our purposes.

Theorem 9 Let s ∈ [2, n], and let A : � × R
n → R

n satisfy (A1)–(A3). Let u ∈ W
1,s
loc (�)

be a local solution of Eq. 1.4. If G ∈ L
q
loc(�) for some q > s, then there exists an exponent

t , s < t < q such that Du ∈ Lt
loc(�). Moreover, the following estimate

( 
BR

|Du|t dx

) 1
t ≤ C

( 
B2R

|Du|s dx

) 1
s +

( 
B2R

|G|t dx

) 1
t

,

holds for every ball BR ⊂ B2R � �.

For the proof we refer to [8, Theorem 6.7, p. 223]. Next, we state a regularity result for
solutions of homogenous non linear elliptic equations of the form

divB(Du) = 0

where B : Rn → R
n an autonomous Carathéodory function with growth s − 1. This means

that

(B1) 〈B(ξ) − B(η), ξ − η〉 ≥ ν(μ2 + |ξ |2 + |η|2) s−2
2 |ξ − η|2,

(B2) |B(ξ) − B(η)| ≤ L(μ2 + |ξ |2 + |η|2) s−2
2 |ξ − η| , and

(B3) |B(ξ)| ≤ �(μ2 + |ξ |2) s−1
2 ,

for each ξ, η ∈ R
n. We recall the following.

Theorem 10 Let B : Rn → R
n be such that (B1), (B2), (B3) hold, and v ∈ W

1,s
loc (�) be a

solution of
divB(Dv) = 0 in �,

Then, for every ball B � �, we have

• supx∈λB |Dv(x)| ≤ C
diam(B)(1−λ)

(ffl
B
(1 + |Dv|s)) 1

s for all 0 < λ < 1.
• ffl

δB
|Dv − (Dv)δB |s ≤ C δαs

ffl
B
(1 + |Dv|s) for all 0 < δ < 1 and some α > 0.

For the proof we refer to Sections 8.3 and 8.7 in [8] or, more specifically to formu-
las (8.104) and (8.106), p.313 in [8]. From previous Theorem, one can easily deduce the
following.

Lemma 11 Let B : Rn → R
n be such that (B1), (B2), (B3) hold. Let B � � be a ball,

and let w ∈ W
1,s
loc (�). Then the problem

{
divB(Dv) = 0 x ∈ B,

v = w x ∈ ∂B.

has a unique solution v ∈ W 1,s (B). Moreover, one has:

• supx∈λB |Dv(x)| ≤ C
diam(B)(1−λ)

(ffl
B
(1 + |Dw|s)) 1

s for all 0 < λ < 1.
• ffl

δB
|Dv − (Dv)λB |s ≤ C δαs

ffl
B
(1 + |Dw|s) for all 0 < δ < 1 and some α > 0.
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We conclude this section with a very well known iteration Lemma, that finds an impor-
tant application in the so called hole-filling method. Its proof can be found for example in
[8, Lemma 6.1].

Lemma 12 Let h : [r, R0] → R be a non-negative bounded function and 0 < ϑ < 1,
A, B ≥ 0 and β > 0. Assume that

h(s) ≤ ϑh(t) + A

(t − s)β
+ B,

for all r ≤ s < t ≤ R0. Then

h(r) ≤ cA

(R0 − r)β
+ cB,

where c = c(ϑ, β) > 0.

2.3 Hodge Decomposition

The interested reader can check the contents of this section in the monograph [13]. We recall
that for a vector field F ∈ Lp(Rn,Rn), with 1 < p < +∞, the Poisson equation

�w = divF

is solved by a function w ∈ W 1,p whose gradient can be expressed in terms of the Riesz
transform as follows

Dw = −(R ⊗ R)(F ).

The tensor product operator R ⊗ R is the n × n matrix whose entries are the second order
Riesz transforms Rj ◦ Rk (1 ≤ j, k ≤ n) and therefore the above identity reads as

Djw = −
n∑

k=1

RjRkF
k,

where Fk denotes the k − th component of the vector field F . Setting E = −(R ⊗ R) and
B = Id − E we then have that

F = E(F ) + B(F ).

By construction, E(F ) is curl free and B(F ) is divergence free. Standard Calderon-
Zygmund theory yields Lp bounds for the operators E and B, whenever 1 < p < +∞.
However, we will need a more precise estimate, which is contained in the following stability
property of the Hodge decomposition.

Lemma 13 Let w ∈ W 1,p(Rn), and let 1 < p < ∞. Then there exist vector fields E ∈
Lp′

(Rn) with curl(E) = 0 and B ∈ Lp′
(Rn) with div(B) = 0 such that

Dw|Dw|p−2 = E + B. (2.1)

Moreover
‖E‖

Lp′
(Rn)

≤ C ‖Dw‖p−1
Lp(Rn)

(2.2)

and
‖B‖

Lp′
(Rn)

≤ C max{p − 2, p′ − 2} ‖Dw‖p−1
Lp(Rn), (2.3)

where C is a universal constant.

The proof of previous Lemma is contained in [14, Theorem 4]. The fact that the constant
is independent of n and p can be derived as in [16, Corollary 3]. We use the above Hodge
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decomposition to prove the following non-standard Caccioppoli inequality, which is well-
known for the community and whose proof is included for the reader’s convenience.

Lemma 14 LetA be such that (A1), (A3) hold. There exists a number p0 = p0(n, ν, L) >

2 with the following property. If p ∈ (p′
0, p0) and u ∈ W

1,p
loc (�) is a weak solution of

Eq. 1.1 for some G ∈ L2
loc ∩ L

p
loc thenˆ

B0

|Du|p ≤ C

(
μp + 1

|B0|p/n

ˆ
2B0

|u|p +
ˆ
2B0

|G|p
)

for every ball B0 ⊂ 2B0 ⊂ �.

Proof Let Br be a ball of radius r , such that Br ⊂ 2Br ⊂ �. Choose radii r < s < t < 2r ,
and let η ∈ C∞

c (�) be a cut off function such that χBs ≤ η ≤ χBt , and ‖∇η‖∞ ≤ c
t−s

. We
apply Lemma 13 to w = ηu, so that we can write

|Dw|p−2 Dw = E + B

with E,B ∈ Lp′
(Rn), both supported on Bt , div(B) = 0, curl(E) = 0, and moreover

‖E‖
Lp′

(Bt )
≤ C‖Dw‖p−1

Lp(Bt )
,

‖B‖
Lp′

(Bt )
≤ C max{p − 2, p′ − 2} ‖Dw‖p−1

Lp(Bt )
.

(2.4)

From curl(E) = 0 and 1 < p′ < ∞we know that there is ϕ ∈ W
1,p′
0 (Bt ) such thatE = Dϕ.

Now we test (1.1) with ϕ, and obtain
ˆ

Bt

〈A(x,Du), Dw〉|Dw|p−2 =
ˆ

Bt

〈A(x,Du),B〉 +
ˆ

Bt

〈G, Dϕ〉

whence
ˆ

Bt

〈A(x,Du), Du〉 η|Dw|p−2 = −
ˆ

Bt

〈A(x,Du), Dη〉 u |Dw|p−2+
ˆ

Bt

〈A(x,Du),B〉+
ˆ

Bt

〈G,Dϕ〉.

Using now (A1), (A3) and the properties of η, we get

ν

ˆ
Bs

|Du|p ≤ �

ˆ
Bt\Bs

(μ+|Du|) |Dη| |u| |Dw|p−2+�

ˆ
Bt

(μ+|Du|) |B|+
ˆ

Bt

|G| |Dϕ|.

Now, since w = ηu, Young’s inequality tells us that
ˆ

Bt \Bs

(μ+|Du|) |Dη| |u| |Dw|p−2 ≤ C(p)

ˆ
Bt\Bs

|u|p |Dη|p+C(p)

ˆ
Bt\Bs

|Du|p+C(p)μp |2Br |

Also, by estimate (2.3) and Young’s inequality,
ˆ

Bt

(μ + |Du|) |B| ≤ ‖μ + |Du|‖Lp(Bt ) ‖B‖
Lp′

(Bt )

≤ C max{p − 2, p′ − 2} ‖μ + |Du|‖Lp(Bt ) ‖Dw‖p−1
Lp(Bt )

≤ C 2p−2 max{p − 2, p′ − 2} ‖μ + |Du|‖Lp(Bt ) (‖u Dη‖p−1
Lp(Bt )

+ ‖η Du‖p−1
Lp(Bt )

)

≤ C(p)μp |2Br | + C 2p−2 max{p − 2, p′ − 2} ‖Du‖p

Lp(Bt )
+ C(p) ‖u Dη‖p

Lp(Bt )
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where C is the universal constant from Lemma 13. Finally, also by Eq. 2.2 and Young’s
inequality we getˆ

Bt

|G| |Dϕ| ≤ ‖G‖Lp(Bt ) ‖Dϕ‖
Lp′

(Bt )

≤ ε‖Dϕ‖p′
Lp′

(Bt )
+ C(ε, p)‖G‖p

Lp(Bt )

≤ Cε‖Dw‖p

Lp(Bt )
+ C(ε, p)‖G‖p

Lp(Bt )

≤ C 2p−1ε‖Du‖p

Lp(Bt )
+ C 2p−1ε‖uDη‖p

Lp(Bt )
+ C(ε, p)‖G‖p

Lp(Bt )
,

where ε > 0 will be chosen later. Putting this together,

ν

ˆ
Bs

|Du|p ≤C(p, �, ε)

ˆ
Bt

|u|p |Dη|p + C(p, �)

ˆ
Bt\Bs

|Du|p + C(p)μp |2Br |

+ C(�) 2p−2(max{p − 2, p′ − 2} + 2ε) ‖Du‖p

Lp(Bt )
+ C(ε)‖G‖p

Lp(Bt )
.

Adding C(p, �)
´
Bs

|Du|p at both sides, and using the properties of η, we get

(ν + C(p, �))

ˆ
Bs

|Du|p ≤C(p, �, ε)

(t − s)p

ˆ
2Br

|u|p + C(p)μp |2Br |

+
(

C(p, �) + C(�) 2p−2(max{p − 2, p′ − 2} + 2ε

)
‖Du‖p

Lp(Bt )

+ C(ε)‖G‖p

Lp(Bt )
.

Above, it is clear that one can always attain

C(�) 2p−2(max{p − 2, p′ − 2} + ε) ≤ ν

2
,

if ε > 0 is chosen small enough, and if p is chosen close enough to 2. We write this as
p ∈ (p′

0, p0). At this point we can use the iteration Lemma 12 to finish the proof.

The number p0 was precisely described in [1] when n = s = 2, and is unknown
otherwise.

2.4 Maximal Functions

Let 1 ≤ s < ∞, and let u ∈ Ls
loc(R

n;R). We will denote

Ms(u)(x) = sup
r>0

( 
B(x,r)

|u|s
) 1

s

When s = 1 this is the classical Hardy-Littlewood maximal operator. We will also denote

M�
s(u)(x) = sup

r>0

( 
B(x,r)

|u − uB(x,r)|s
) 1

s

M�
s,R(u)(x) = sup

0<r<R

( 
B(x,r)

|u − uB(x,r)|s
) 1

s

When s = 1 they go back to the well-known Fefferman-Stein sharp maximal function.
These operators are classical tools in harmonic analysis, we refer the interested reader to [9,
10].

The following lemma is proven in [15] for s = 1. Its proof for s > 1 follows similarly.
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Lemma 15 Let 1 ≤ s < q < ∞, and let u ∈ Ls(Rn).

(i) One has ‖Msu‖Lq(Rn) ≤ C(n, s, q)‖u‖Lq(Rn).
(ii) There exists a constant k0 = k0(n, s, q) ≥ 2 such that if u is supported on a ball

B(x0, R) then

‖M�
s,k0R

u‖Lq(B(x0,k0R)) ≥ C(n, s, q)‖u‖Lq(B(x0,R)).

3 V MO Coefficients in R
n

In this section, we assume that n ≥ 2, and thatA : �×R
n → R

n is a Caratheodory function
such that assumptions (A1), (A2), (A3) in the introduction are satisfied. We also require a
control on the oscillations, which is described as follows. Given a ball B ⊂ �, let us denote

AB(ξ) =
 

B

A(x, ξ) dx

One can easily check that the operator AB(ξ) also satisfies assumption (A1), (A2), (A3).
Now set

V (x, B) = sup
ξ �=0

|A(x, ξ) − AB(ξ)|
(μ2 + |ξ |2) s−1

2

, (3.1)

for x ∈ � and B ⊂ �. If A is given by the weighted s-laplacian, that is A(x, ξ) =
γ (x) |ξ |s−2ξ , one obtains

V (x, B) = |γ (x) − γB |,
where γB = ffl

B
γ (y)dy, and so any reasonable V MO condition on γ requires that the

mean value of V (x, B) on B goes to 0 as |B| → 0. Our V MO assumption on general
Carathéodory functions A consists of a uniform version of this fact. Namely, we will say
that x �→ A(x, ξ) is locally uniformly in V MO if for each compact set K ⊂ � we have that

lim
R→0

sup
r(B)<R

sup
c(B)∈K

 
B

V (x, B) dx = 0. (3.2)

Here c(B) denotes the center of the ball B, and r(B) its radius.
The main result in this section is an a priori estimate for weak solutions belonging to

W 1,q for some q > s. It is a local nonlinear version of the classical Theorem by Iwaniec
and Sbordone [14]. Our proof relies on arguments similar to those used in [15].

Theorem 16 Assume that A satisfies (A1), (A2), (A3) and that it is locally uniformly in
V MO, and let q > s. There exists λ = λ(n, s, q) > 1 with the following property. If
x0 ∈ � then there is a number d0 > 0 (depending on ν, �, L, s, q, n, A and x0) such that if
u ∈ W 1,q (�;R) is such that

divA(x,Du) = div(|G|s−2G) weakly in � (3.3)

for some G ∈ L
q
loc(�;R), then the estimate

 
B0

|Du|q ≤ C

(
μq + 1

dq

 
λB0

|u|q +
 

λB0

|G|q
)

(3.4)

holds whenever 0 < d < d0, B0 = B(x0, d) and λB0 ⊂ �.
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Proof of Theorem 16 Let k0 ≥ 2 be the constant in Lemma 15. Let δ ∈ (0, 1) to be
determined later. We are given a ball B0 = B(x0, d), such that B̃0 = (1 + 2

δ
)k0B0 ⊂ �.

The first step consists of localizing the problem. This is done by choosing arbitrary
radii 0 < d

2 < ρ < r < d , balls Bρ = B(x0, ρ) and Br = B(x0, r), and a cut off

function η : R
n → R such that η ∈ C∞

c (Rn), χBρ ≤ η ≤ χBr and ‖Dη‖∞ ≤ c(n)
r−ρ

.

Set w = ηs′
u. Then clearly w ∈ W 1,q (Rn) has compact support in Br and we have

that

divA(x, Dw) = div
(
A(x, Dw) − A(x, ηs′

Du)
) + div

(
A(x, ηs′

Du) − ηsA(x,Du)
)

+ div(ηsA(x,Du))

= div(A(x,Dw) − A(x, ηs′
Du)) + div

(
A(x, ηs′

Du) − ηsA(x,Du)
)

+ηs div(A(x,Du)) + D(ηs)A(x,Du). (3.5)

For each y ∈ k0B0 and each 0 < R <
k0d
δ

we setBR = B(y,R). ThenBR ⊂ (1+ 1
δ
)k0B0 ⊂

�, and thus the quantity

ABR
(ξ) =

 
BR

A(x, ξ) dx

is well defined. Let v be the unique solution to the following Dirichlet problem

{
divABR

(Dv) = 0 x ∈ BR

v = w x ∈ ∂BR.
(3.6)

Now, we multiply both sides of the equality (3.5) by v−w and, since v−w vanishes outside
of BR , we can integrate by parts thus getting

ˆ
BR

〈
A(x, Dw), Dv − Dw

〉
=

ˆ
BR

〈
A(x, Dw) − A(x, ηs′

Du), Dv − Dw
〉

+
ˆ

BR

〈
A(x, ηs′

Du) − ηsA(x, Du), Dv − Dw〉

+
ˆ

BR

〈
A(x, Du), D(ηs(v − w))

〉
−
ˆ

BR

D(ηs)A(x, Du)(v − w)

=
ˆ

BR

〈
A(x, Dw) − A(x, ηs′

Du), Dv − Dw
〉

+
ˆ

BR

〈
A(x, ηs′

Du) − ηsA(x, Du), Dv − Dw〉

+
ˆ

BR

|G|s−2
〈
G, D(ηs(v − w))

〉
−
ˆ

BR

D(ηs)A(x, Du)(v − w),

where, in the last equality, we used that u is a solution of the Eq. 3.3. On the other hand,
since v is a solution of the Dirichlet problem (3.6), we also have

ˆ
BR

〈
AB(Dv) − AB(Dw),Dv − Dw

〉
=
ˆ

BR

〈
AB(Dw),Dw − Dv

〉
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and so

ˆ
BR

〈
AB(Dv) − AB(Dw),Dv − Dw

〉
=

ˆ
BR

〈
AB(Dw) − A(x, Dw),Dw − Dv

〉

+
ˆ

BR

〈
A(x, Dw) − A(x, ηs′

Du), Dw − Dv
〉

+
ˆ

BR

〈
A(x, ηs′

Du) − ηsA(x,Du),Dw − Dv〉

+
ˆ

BR

|G|s−2
〈
G,D(ηs(w − v))

〉

−
ˆ

BR

D(ηs)A(x,Du)(w − v)

≤
ˆ

BR

|AB(Dw) − A(x,Dw)||Dw − Dv|

+
ˆ

BR

|A(x,Dw) − A(x, ηs′
Du)||Dw − Dv|

+
ˆ

BR

|A(x, ηs′
Du) − ηsA(x, Du)| |Dw − Dv|

+
ˆ

BR

|G|s−1|D(ηs(w − v))|

+
ˆ

BR

|D(ηs)||A(x,Du)||w − v|.

We write previous inequality as follows

I0 ≤ I1 + I2 + I3 + I4 + I5

and we estimate Ij separately. Since s ≥ 2, by virtue of the ellipticity assumption (A1), we
have that

ν

ˆ
BR

|Dv − Dw|s ≤ ν

ˆ
BR

|Dv − Dw|2 (μ2 + |Dv|2 + |Dw|2) s−2
2 ≤ I0 (3.7)

By the definition of V (x, B) in (3.1), thanks to the assumption (3.2) and Young’s and
Hölder’s inequalities, we estimate I1 as follows

I1 ≤
ˆ

BR

V (x, B) (μ2 + |Dw|2) s−1
2 |Dw − Dv|

≤ ε

ˆ
BR

|Dv − Dw|s + C(ε, s)

ˆ
B

V (x, B)s
′
(μ2 + |Dw|2) s

2

≤ ε

ˆ
BR

|Dv − Dw|s + C(ε, s)

(ˆ
BR

V (x, B)
ts′
t−s

) t−s
t

(ˆ
BR

(μ2 + |Dw|2) t
2

) s
t

≤ ε

ˆ
BR

|Dv − Dw|s + C(ε, s, t, �)

(ˆ
BR

V (x, B)

) t−s
t

(ˆ
BR

(μ2 + |Dw|2) t
2

) s
t

(3.8)
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where t > s is the exponent determined in Lemma 9, ε > 0 is a parameter that will be cho-
sen later and we used that the function V (x, B), by virtue of assumption (A3), is bounded
in �. By assumption (A2), the definition of w, Young’s inequality and the properties of η,
we have

I2 ≤ L

ˆ
BR

|Dw − ηs′
Du|(μ2 + |Dw|2 + |ηs′

Du|2) s−2
2 |Dv − Dw|

= L

ˆ
BR

|D(ηs′
)u|(μ2 + |Dw|2 + |Dw − D(ηs′

)u|2) s−2
2 |Dv − Dw|

≤ c(s, L)

ˆ
BR

|D(ηs′
)u|(μ + |Dw| + |D(ηs′

)u|)s−2|Dv − Dw|

≤ c(s, L)

ˆ
BR

|D(ηs′
)u|s−1|Dv − Dw| + c(s)

ˆ
BR

|D(ηs′
)u|(μ + |Dw|)s−2|Dv − Dw|

≤ ε

ˆ
BR

|Dv − Dw|s + σ

ˆ
BR

(μ + |Dw|)s + c(ε, σ, s)

(r − ρ)s

ˆ
BR

|u|s , (3.9)

where ε, σ > 0 will be chosen later. We now proceed with the estimate of I3. The properties
of η and Young’s inequality yield

I3 ≤
ˆ

BR\Br

|A(x, 0)||Dv − Dw| +
ˆ

BR∩(Br\Bρ )

|A(x, ηs′
Du) − ηsA(x, Du)||Dv − Dw|

≤ C(ε)

ˆ
BR\Br

|A(x, 0)|s′ + C(ε)

ˆ
BR∩(Br\Bρ )

|A(x, ηs′
Du) − A(x, Du)|s′

+C(ε)

ˆ
BR∩(Br\Bρ )

|A(x, Du) − ηsA(x, Du)|s′ + ε

ˆ
BR

|Dv − Dw|s

≤ C(ε, �, s)μs Rn + C(ε, L, s)

ˆ
BR∩(Br\Bρ )

|ηs′
Du − Du|s′

(μ + |ηs′
Du| + |Du|)s′(s−2)

+C(ε, �, s)

ˆ
BR∩(Br\Bρ )

(1 − ηs)s
′ |Du|s + ε

ˆ
BR

|Dv − Dw|s

≤ C(ε, �, s)μs Rn + C(ε, L, �, s)

ˆ
BR

|Du|sχBr \Bρ
+ ε

ˆ
BR

|Dv − Dw|s , (3.10)

where we also used assumptions (A2) and (A3). Using Young’s inequality again and the
properties of η, we have that

I4 ≤
ˆ

BR

ηs |G|s−1|Dv − Dw| +
ˆ

BR

|D(ηs)||G|s−1|v − w|

≤ ε

ˆ
BR

|Dv − Dw|s + c(ε)

(
Rs

(r − ρ)s
+ 1

)ˆ
BR

|G|s + ε

ˆ
BR

|v − w|s
Rs

≤ ε

ˆ
BR

|Dv − Dw|s + c(ε)

(
dsks

0

δs(r − ρ)s
+ 1

)ˆ
BR

|G|s + C(n, s)ε

ˆ
BR

|Dv − Dw|s ,
(3.11)

where, in the last estimate, we used Poincaré - Wirtinger inequality and the bound R <
k0d
δ
.

Finally, by virtue of Young and Poincaré - Wirtinger inequalities and again the properties of
η, we estimate
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I5 ≤ �

ˆ
BR

|D(ηs)|(μ + |Du|)s−2(μ + |Du|)|v − w|

≤ c(n, �)

(r − ρ)

ˆ
BR

η
1

s−1 (μ + ηs′ |Du|)s−2(μ + |Du|)|v − w|

= c(n, �)

(r − ρ)

ˆ
BR

η
1

s−1 (μ + |Dw − D(ηs′
)u|)s−2(μ + |Du|)|v − w|

≤ c(n, �, s)

(r − ρ)

ˆ
BR

|Dw|s−2(μ + |Du|)|v − w|

+c(n, �, s)

(r − ρ)

ˆ
BR

(μ + |D(ηs′
)u|)s−2(μ + |Du|)|v − w|

≤ ε

ˆ
BR

|Dv − Dw|s + σ

ˆ
BR

|Dw|s + C(n, ε, σ, �, s)
Rs

(r − ρ)s

ˆ
BR

|Du|s

+C(n, ε, σ, �, s)

(r − ρ)s

ˆ
BR

|u|s + C
μs Rn+s

(r − ρ)s
. (3.12)

Combining estimates (3.7), (3.8), (3.9), (3.10), (3.11) and (3.12) we conclude that

ν

ˆ
BR

|Dv − Dw|s ≤ ε(5 + C(n, s))

ˆ
BR

|Dv − Dw|s + 2σ
ˆ

BR

|Dw|s + c

(r − ρ)s

ˆ
BR

|u|s

+c

(ˆ
BR

V (x, B)

) t−s
t

(ˆ
BR

(μ + |Dw|2) t
2

) s
t

+c
Rs

(r − ρ)s

ˆ
BR

|Du|s + c
dsks

0

δs(r − ρ)s

ˆ
BR

|G|s

+c

ˆ
BR

|Du|sχBr \Bρ
+ c μs Rn + C

μs Rn+s

(r − ρ)s
,

where c = c(ε, σ, s, n, �, L). Choosing ε = ν
2(5+C(n,s))

, we can reabsorb the first integral
in the right hand side of previous estimate by the left hand side thus obtaining

ν

2

ˆ
BR

|Dv − Dw|s ≤ 2σ
ˆ

BR

|Dw|s + c

(r − ρ)s

ˆ
BR

|u|s

+c

(ˆ
BR

V (x, B)

) t−s
t

(ˆ
BR

(μ + |Dw|2) t
2

) s
t

+c
Rs

(r − ρ)s

ˆ
BR

|Du|s + c

(
dsks

0

δs(r − ρ)s
+ 1

)ˆ
BR

|G|s

+c

ˆ
BR

|Du|sχBr \Bρ
+ c μs Rn + C

μs Rn+s

(r − ρ)s
, (3.13)

where c = c(ν, σ, s, n, �, L). Consider the ball BδR = B(y, δR), and observe that

 
BδR

|Dw − (Dw)BδR
|s ≤ C(s)

 
BδR

|Dv − (Dv)BδR
|s + C(s) δ−n

 
BR

|Dw − Dv|s .
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Now we can estimate the two terms on the right hand side with the help of estimate (3.13)
and Lemma 11 as follows

 
BδR

|Dw − (Dw)BδR
|s ≤ (C(s)δαs + 2σδ−n)

 
BR

|Dw|s + cδ−n

(r − ρ)s

 
BR

|u|s

+cδ−n

( 
BR

V (x, B)

) t−s
t

( 
BR

(μ + |Dw|2) t
2

) s
t

+cδ−n Rs

(r − ρ)s

 
BR

|Du|s + cδ−n

(
dsks

0δ
−s

(r − ρ)s
+ 1

) 
BR

|G|s

+cδ−n

 
BR

|Du|sχBr \Bρ
+ c μs δ−n + μs δ−n−s

dsks
0

(r − ρ)s
.

By the classical theory, since 2BR ⊂ � and u is a local solution, we have that

 
BR

|Du|s ≤ C

Rs

 
B2R

|u|s + C

 
B2R

|G|s

and therefore, from B2R ⊂ B̃0 we conclude that

 
BδR

|Dw − (Dw)BδR
|s ≤ c( δαs + σδ−n)

 
BR

|Dw|s

+c

(
ds ks

0 δ−n−s

(r − ρ)s
+ δ−n

) 
B2R

|G χB̃0
|s

+c

(
δ−n−s

(r − ρ)s
+ δ−n

) 
B2R

|uχB̃0
|s

+c δ−n

( 
BR

V (x, BR)dx

) t−s
t

( 
BR

(μ + |Dw|2) t
2

) s
t

+cδ−n

ˆ
BR

|Du|sχBr \Bρ
+ c μs δ−n + μs δ−n−s

dsks
0

(r − ρ)s

≤ c δαs

 
BR

|Dw|s +
(

c ks
0 dsδ−n−s

(r − ρ)s
+ δ−n

) 
B2R

|GχB̃0
|s

+
(

c δ−n−s

(r − ρ)s
+ δ−n

)  
B2R

|u χB̃0
|s

+c δ−n

( 
BR

V (x, BR)dx

) t−s
t

( 
BR

(μ + |Dw|2) t
2

) s
t

+cδ−n

ˆ
BR

|Du|sχBr \Bρ
+ c μs δ−n + μs δ−n−s

dsks
0

(r − ρ)s
,
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where we chose σ = δαs+n. Now, we take supremum over all possible values R ∈
(0, k0d/δ), and we get

M�
s,k0d

(Dw)(y)s ≤c δαs Ms(Dw)(y)s + c δ−nMs(|Du|χBr \Bρ
)s(y)

+ c

(
ds ks

0 δ−n−s

(r − ρ)s
+ δ−n

)
Ms(G χB̃0

)s(y)

+ c

(
δ−n−s

(r − ρ)s
+ δ−n

)
Ms(u χB̃0

)s(y)

+ c δ−n

(
Mt (Dw)(y)s

)
sup

0<R<k0d/δ

( 
BR

V (x, BR)dx

) t−s
t

+ c μs δ−n + μs δ−n−s
dsks

0

(r − ρ)s
.

Now, we raise to the power q
s
, and then integrate with respect to y over k0B0. We obtain

‖M�
s,k0d

(Dw)‖q

Lq (k0B0)
≤ C(s, q) δαq ‖Ms (Dw)‖q

Lq (Rn)
+ c δ

−nq
s ‖Ms (|Du|χBr \Bρ

)‖q

Lq (Rn)

+ c

(
k
q

0 dqδ
−nq

s
−q

(r − ρ)q
+ δ

−nq
s

)
‖Ms (G χB̃0

)‖q

Lq (Rn) + c

(
δ

−nq
s

−q

(r − ρ)q
+ δ

−nq
s

)
‖Ms (u χB̃0

)‖q

Lq (Rn)

+ c δ
−nq

s

(
‖Mt (Dw)‖q

Lq (Rn)

)
sup

y∈k0B0

sup
0<R<k0d/δ

( 
BR

V (x, BR)dx

) t−s
t

+ c μq |k0B0|
(

δ
−nq

s + δ
−nq

s
−qdq

(r − ρ)s

)
,

where c = c(n, s, q, �, L, ν, δ). Now we use Lemma 15 (i) and (ii), and obtain

‖Dw‖q

Lq(B0)
≤C(n, s, q) δαq ‖Dw‖q

Lq(B0)
+ c δ

−nq
s ‖Du χBr \Bρ

‖q

Lq(Rn)

+ c

(
dq k

q

0 δ
−nq

s
−q

(r − ρ)q
+ δ

−nq
s

)
‖GχB̃0

‖q

Lq(Rn)

+ c

(
δ

−nq
s

−q

(r − ρ)q
+ δ

−nq
s

)
‖uχB̃0

‖q

Lq(Rn)

+ c δ
−nq

s

(
‖Dw‖q

Lq(B0)

)
sup

y∈k0B0

sup
0<R<k0d/δ

( 
BR

V (x, BR)dx

) t−s
t

+ c μq |k0B0|
(

δ
−nq

s + δ
−nq

s
−qdq

(r − ρ)s

)
.

(3.14)

Our next aim consists of inserting the two terms with Dw on the right hand side into the
term on the left hand side, by making their coefficients as small as possible. To do this, we
first look at the term C(n, s, q) δαq ‖Dw‖q

Lq(B0)
. To be absorbed on the left hand side, it

suffices to choose δ such that

C(n, s, q) δαq = 1

4
⇐⇒ δ = 1

[4C(n, s, q)] 1
αq

.
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Note that this choice of δ = δ(n, s, q, α) > 0 is independent of d. Therefore, taking into
account that δ has been fixed, estimate (3.14) becomes

‖Dw‖q

Lq(B0)
≤c ‖Du χBr \Bρ

‖q

Lq(Rn)

+ c

(
k
q

0 dq

(r − ρ)q
+ 1

)
‖G χB̃0

‖q

Lq(Rn) +
(

c

(r − ρ)q
+ 1

)
‖u χB̃0

‖q

Lq(Rn)

+ c̃
(
‖Dw‖q

Lq(B0)

)
sup

y∈k0B0

sup
0<R<k0d/δ

( 
BR

V (x, BR)dx

) t−s
t

+ c μq |k0B0| dq

(r − ρ)q
,

(3.15)
with constants c and c̃ depending on n, s, q, �, L, ν but independent of d. Now, if k0d <
d(x0,∂�)

2 then

sup
y∈k0B0

sup
0<R<k0d/δ

( 
BR

V (x, BR)dx

) t−s
t ≤ sup

y∈B(x0,
d(x0,∂�)

2 )

sup
0<R<k0d/δ

( 
BR

V (x, BR)dx

) t−s
t

and moreover, from Eq. 3.2 we have that

lim
d→0

sup
y∈B(x0,

d(x0,∂�)

2 )

sup
0<R<k0d/δ

( 
BR

V (x, BR)dx

) t−s
t = 0.

In particular, d > 0 can be chosen small enough so that

c̃ sup
y∈k0B0

sup
0<R<k0d/δ

( 
BR

V (x, BR)dx

) t−s
t

<
1

4
.

Note that the chosen value d certainly depends on d(x0, ∂�), A, ν, �, L, s, q and t . Nev-
ertheless, this allows us to insert the remaining term with Dw into the left hand side. One
then gets immediately from Eq. 3.14 and our choice of w that

ˆ
Bρ

|Du|q ≤2n

ˆ
Br

|Dw|q ≤ c

ˆ
Br\Bρ

|Du|q + c

(
dq

(r − ρ)q
+ 1

) ˆ
B̃0

|G|q

+ c

(
1

(r − ρ)q
+ 1

)ˆ
B̃0

|u|q + c μq |B̃0|
(

dq

(r − ρ)q
+ 1

)
.

Filling the hole, i.e. adding to both sides of previous inequality the quantity

c

ˆ
Bρ

|Du|q

we obtain
ˆ
Bρ

|Du|q ≤ϑ

ˆ
Br

|Du|q + c

(
dq

(r − ρ)q
+ 1

) ˆ
B̃0

|G|q

+ c

(
1

(r − ρ)q
+ 1

)ˆ
B̃0

|u|q + c μq |B̃0|
(

dq

(r − ρ)q
+ 1

)
,
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with 0 < ϑ < 1. Since the above estimate is valid for arbitrary radii d
2 < ρ < r < d , by

virtue of Lemma 12, we conclude that 
1
2B0

|Du|q ≤ C(n, ν, �, L, s, q)

(
μq +

 
B̃0

|G|q + 1

dq

 
B̃0

|u|q
)

.

Since B̃0 = (1 + 2
δ
)k0B0, the claim follows by simply choosing λ = 2(1 + 2

δ
)k0.

We are now in a position to give the

Proof of Theorem 5 Fix a ball BR(x0) � � with 0 < R < λd0 where λ and d0 are the ones
determined in Theorem 16. Moreover fix a smooth kernel φ ∈ C∞

c (B1(0)) with φ ≥ 0 and´
B1(0)

φ = 1, let us consider the corresponding family of mollifiers (φε)ε>0 and put

Aε(x, ξ) := A(·, ξ) ∗ φε(x) =
ˆ

B1

φ(ω)A(x−εω, ξ) dω (3.16)

and

Gε = G ∗ φε (3.17)

each positive ε < dist(BR, ∂�). One can easily check that the assumptions
(A1), (A2), (A3) imply

(H1) 〈Aε(x, ξ) − Aε(x, η), ξ − η〉 ≥ ν(μ2 + |ξ |2 + |η|2) s−2
2 |η − ξ |2

(H2) |Aε(x, ξ) − Aε(x, η)| ≤ L|ξ − η|(μ2 + |ξ |2 + |η|2) s−2
2

(H3) |Aε(x, ξ)| ≤ �(μ2 + |ξ |2) s−1
2

for almost every x ∈ � and for all ξ, η ∈ R
n. Moreover, setting

Vε(x, BR) = sup
ξ �=0

∣∣Aε(x, ξ) − Aε,BR
(ξ)

∣∣

(μ2 + |ξ |2) s−1
2

with Aε,BR
(ξ) =

 
BR

Aε(y, ξ)dy

since x → Aε(x, ξ) is C∞ smooth, we have that

(H4) lim
r→0

sup
r(B)<r

sup
c(B)∈BR

 
B

Vε(x, B) dx = 0 .

For further needs we record that, since Aε(x,Du) ∈ L
s

s−1 (BR), that

Aε(x,Du) → A(x, Du) strongly in ∈ L
s

s−1 (BR) (3.18)

and also that, since G ∈ Lq(BR),

Gε → G strongly in ∈ L
q

loc(BR). (3.19)

Let u ∈ W
1,s
loc (�) be a solution of the Eq. 1.1 and let us denote by uε ∈ W 1,s (BR) the

unique solution of the Dirichlet problem

(Pε)

{
divAε(x,Duε) = div(|Gε|s−1Gε) in BR

uε = u on ∂BR

By the classical theory, since x → Aε(x, ξ) is C∞ smooth, we have that Duε ∈ Lq , for
every q ≥ s.
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Using ϕ = uε − u as test function in the equation (Pε) and in the Eq. 1.1, we have

ˆ
BR

〈
Aε(x, Duε),Du − Duε

〉
dx =

ˆ
BR

∣∣∣Gε|s−1〈Gε, Du − Duε

〉
dx

ˆ
BR

〈
A(x, Du),Du − Duε

〉
dx =

ˆ
BR

|G|s−1
〈
G,Du − Duε

〉
dx

Subtracting the second equation from the first one, we obtain

ˆ
BR

〈
Aε(x, Duε)−A(x, Du),Du−Duε

〉
dx =

ˆ
BR

〈
|Gε|s−1Gε−|G|s−1G,Du−Duε

〉
dx

(3.20)
Inequality (H1) yields

ν

ˆ
BR

(μ2 + |Du|2 + |Duε|2) s−2
2 |Du − Duε|2 dx

≤
ˆ

BR

〈
Aε(x,Duε) − Aε(x,Du),Du − Duε

〉
dx

=
ˆ

BR

〈
A(x,Du) − Aε(x,Du),Du − Duε

〉
dx

+
ˆ

BR

〈
|Gε|s−1Gε − |G|s−1G,Du − Duε

〉
dx

≤
(ˆ

BR

|A(x,Du) − Aε(x,Du)| s
s−1 dx

) s−1
s

(ˆ
BR

|Du − Duε|s dx

) 1
s

+
(ˆ

BR

|Gε − G|sdx

) s−1
s

(ˆ
BR

|Du − Duε|s dx

) 1
s

, (3.21)

where we used the equality (3.20) and Hölder’s inequality. Since s ≥ 2, by well known
means, from estimate (3.21) we deduce

ˆ
BR

|Du − Duε|s dx ≤ c

ˆ
BR

|A(x,Du) − Aε(x, Du)| s
s−1 dx +

ˆ
BR

|Gε − G|sdx.

Taking the limit as ε → 0 in previous inequality and recalling (3.18) and (3.19), we deduce
that uε converges strongly to u in W 1,s . Since the operator Aε satisfies estimates (H1)–
(H4) and Duε ∈ Lq for every q ≥ s, we are legitimate to apply the a priori estimate of
Theorem 16 to each uε thus getting

ˆ
Bρ

|Duε|q ≤ C

(
μq +

ˆ
Bλρ

|uε|q +
ˆ

Bλρ

|Gε|q
)

(3.22)

for every q > s and for every positive ρ such that Bλρ ⊂ BR . Let us define the decreasing
sequence of exponents

{
q0 = q

qj = nqj−1
n+qj−1

j ∈ N
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Note that, since qj ↘ 0, there exists h ∈ N such that qh ≤ s∗. Chose now ρ = ρh so small
to have λhρ < R and let ri = λiρ. Since G ∈ Lq(BR) we have G ∈ Lqi (BR) for every
i ∈ N and so we can write inequality (3.22) as follows

ˆ
Bri

|Duε|qi ≤ Cqi

r
qi

i+1

ˆ
Bri+1

|uε|qi + Cqi

ˆ
Bri+1

|Gε|qi + Cqi
μqi |Bri+1 |

≤ Cqi

r
qi

i+1

(ˆ
Bri+1

|uε|qi+1 + |Duε|qi+1

) qi
qi+1

+ Cqi

ˆ
Bri+1

|Gε|qi + Cqi
μqi |Bri+1 |

≤ Cqi

r
qi

i+1

[ˆ
Bri+1

|uε|qi+1 + Cqi+1

r
qi+1
i+2

ˆ
Bri+2

|uε|qi+1 + Cqi+1

ˆ
Bri+2

|Gε|qi+1 (3.23)

+Cqi+1 μqi+1 |Bri+2 |
] qi

qi+1

+Cqi

ˆ
Bri+1

|Gε|qi + Cqi
μqi |Bri+1 |

≤ Cqi
Cqi+1

(ri+1ri+2)qi

(ˆ
Bri+2

|uε|qi+1

) qi
qi+1

+ Cqi
Cqi+1

(ri+1)qi

(ˆ
Bri+2

|Gε|qi+1

) qi
qi+1

(3.24)

+Cqi

ˆ
Bri+2

|Gε|qi

+Cqi
μqi |Bri+1 | + Cqi+1Cqi

μqi |Bri+1 ||Bri+2 |
qi

qi+1 (3.25)

where we used first Sobolev inequality and again inequality at (3.22) and finally Young’s
inequality. Iterating estimate (3.23), from i = 0 to i = h − 1, we deduce that

ˆ
Bρ

|Duε|q ≤ C̃h

(ˆ
B

λhρ

|uε|qh

) q
qh

+ C̃h

ˆ
BR

|Gε|q + C̄h μq,

where C̃h = �h−1
i=0

Cqi

r
qi

i+1

. Since qh ≤ s∗, by virtue of the strong convergence of uε to u in

W 1,s , we can pass to limit as ε → 0 in previous estimate to deduce

ˆ
Bρ

|Du|q ≤ C̃h

(ˆ
BR

|u|qh

) q
qh + C̃h

ˆ
BR

|G|q + C̃h μq,

i.e. the conclusion.

4 Proof of Theorem 1

We first prove that if Eq. 1.3 is satisfied then A has the locally uniform V MO property
(3.2).

Lemma 17 Let A be such that (A1), (A2), (A3) hold. Assume that Eq. 1.3 is satisfied.
ThenA is locally uniformly in V MO, that is, Eq. 3.2 holds with s = 2.
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Proof We have 
B

V (x, B) dx =
 

B

sup
ξ �=0

|A(x, ξ) − AB(ξ)|
(μ2 + |ξ |2) 1

2

dx

≤
 

B

sup
ξ �=0

 
B

|A(x, ξ) − A(y, ξ)|
(μ2 + |ξ |2) 1

2

dy dx

≤
 

B

sup
ξ �=0

 
B

(g(x) + g(y)) |x − y|α dy dx

=
 

B

 
B

(g(x) + g(y)) |x − y|α dy dx

≤
( 

B

 
B

(g(x) + g(y))
n
α dy dx

) α
n

( 
B

 
B

|x − y| nα
n−α dy dx

) n−α
n

≤
(

1

|B|
ˆ

B

g
n
α

) α
n

C(α, n) |B| α
n = C(n, α)

ˆ
B

g
n
α

and thus Eq. 3.2 holds.

Proof of Theorem 1 Given a test function ϕ ∈ C∞
c (�) such that supp τ−hϕ ⊂ �, we test

the equation
divA(x,Du) = 0

with ϕ and τ−hϕ, and combine the resulting identities. We haveˆ
〈A(x+h, Du(x+h))−A(x+h,Du), ∇ϕ〉 = −

ˆ
〈A(x+h, Du(x))−A(x,Du(x)),∇ϕ〉.

Now, by setting

Ah(x, ξ) = 1

|h|α
(
A(x + h, |h|α ξ + Du(x)) − A(x + h, Du)

)

and vh = �hu
|h|α , we immediately see that vh is a weak solution of

divAh(x,Dvh) = divGh (4.1)

where

Gh(x) = − 1

|h|α (A(x + h,Du(x)) − A(x,Du(x))) . (4.2)

It is immediate to check that the new Ah still satisfies (A1), (A2) with the same constants
ofA. Moreover, (A3) is also satisfied byAh but now with μ = 0. We also note that

|Gh(x)| =
∣∣∣∣
A(x + h,Du(x)) − A(x,Du(x))

|h|α
∣∣∣∣ ≤ (g(x + h) + g(x)) (μ2 + |Du(x)|2) 1

2 ,

Now, we know from Lemma 17 that A is locally uniformly in V MO, and so Theorem 5

ensures that Du ∈ Lr
loc for each finite r > 2. In particular, if 2 ≤ p < n

α
then Du ∈ L

p∗
α

loc

and as a consequence Gh ∈ L
p
loc. It then follows that Lemma 14 can be applied to Eq. 4.1

with μ = 0 and so there exists p0 = p0(n, ν, �) > 2 such that if one further has 2 ≤ p < p0
then

‖Dvh‖Lp(B) ≤ C0

(
1

rB
‖vh‖Lp(2B) + ‖Gh‖Lp(2B)

)
(4.3)
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for each ball B with radius rB such that 2B ⊂ �. In terms of u, this reads as
∥∥∥∥
�h(Du)

|h|α
∥∥∥∥

Lp(B)

≤ C0

(
1

rB

∥∥∥∥
�hu

|h|α
∥∥∥∥

Lp(2B)

+ ‖Gh‖Lp(2B)

)

≤ C0

(
1

rB

∥∥∥∥
�hu

|h|α
∥∥∥∥

Lp(2B)

+ ‖g‖
L

n
α (2B)

‖(1 + |Du|2) 1
2 ‖

L
np

n−αp (2B)

)

and so taking supremum for |h| < δ, δ > 0 small enough,

sup
h

∥∥∥∥
�h(Du)

|h|α
∥∥∥∥

Lp(B)

≤ C0

(
1

rB
sup
h

∥∥∥∥
�hu

|h|α
∥∥∥∥

Lp(2B)

+ ‖g‖
L

n
α (2B)

‖(1 + |Du|2) 1
2 ‖

L
np

n−αp (2B)

)

We now use Lemma 7 to see that the term suph

∥∥∥�hu
|h|α

∥∥∥
Lp(2B)

is finite, since u ∈ W
1,p
loc .

We then obtain that Du ∈ Bα
p,∞,loc, as claimed. When A is linear in the gradient variable,

that is A(x, ξ) = A(x)ξ , one immediately sees that x �→ Ah(x, ξ) is locally uniformly in
V MO, and therefore the restriction p < p0 at Eq. 4.3 is not needed.

5 Proof of Theorems 2, 3 and 4

We first prove that if A satisfies (A1), (A2), (A3), (A4) then it is locally uniformly in
V MO. WhenA is linear in the second variable, this comes from Lemma 6.

Lemma 18 Let A be such that (A1), (A2), (A3), (A4) hold. Then A is locally uniformly
in V MO , that is, (3.2) holds with s = 2.

Proof Given a point x ∈ �, let us write Ak(x) = {y ∈ � : 2−k ≤ |x − y| < 2−k+1}. We
have  

B

V (x, B) dx =
 

B

sup
ξ �=0

|A(x, ξ) − AB(ξ)|
(μ2 + |ξ |2) 1

2

dx

≤
 

B

sup
ξ �=0

 
B

|A(x, ξ) − A(y, ξ)|
(μ2 + |ξ |2) 1

2

dy dx

=
 

B

sup
ξ �=0

1

|B|
∑

k

ˆ
B∩Ak(x)

|A(x, ξ) − A(y, ξ)|
(μ2 + |ξ |2) 1

2

dy dx

≤ 1

|B|2
∑

k

ˆ
B

ˆ
B∩Ak(x)

|x − y|α (gk(x) + gk(y)) dy dx

The last term above is bounded by

(
1

|B|2
∑

k

ˆ
B

ˆ
B∩Ak(x)

|x − y| nα
n−α dy dx

) n−α
n

×
(

1

|B|2
∑

k

ˆ
B

ˆ
B∩Ak(x)

(gk(x) + gk(y))
n
α dy dx

) α
n

= I · II
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The first sum is very easy to handle, since

I =
(

1

|B|2
∑

k

ˆ
B

ˆ
B∩Ak(x)

|x − y| nα
n−α dy dx

) n−α
n

≤ C(n, α) |B| α
n

Concerning the second, we see that

II ≤
(

1

|B|2
∑

k

|B ∩ Ak(x)|
ˆ

B

gk(x)
n
α dx

) α
n

≤
(

1

|B|2
∑

k

(ˆ
B

gk(x)
n
α dx

) αq
n

) α
n

n
αq

(
1

|B|2
∑

k

|B ∩ Ak(x)| αq
αq−n

) α
n

αq−n
αq

= 1

|B| 2q

(
∑

k

‖gk‖q

L
n
α (B))

) 1
q 1

|B|2( α
n
− 1

q
)

(
∑

k

|B ∩ Ak(x)| αq
αq−n

) α
n

αq−n
αq

≤ 1

|B| 2q

(
∑

k

‖gk‖q

L
n
α (B))

) 1
q 1

|B|2( α
n
− 1

q
)
C(n, α, q)|B| α

n

= C(n, α, q) |B|− α
n

(
∑

k

‖gk‖q

L
n
α (B))

) 1
q

thus  
B

V (x, B) dx ≤ I · II ≤ C(n, α, q)

(
∑

k

‖gk‖q

L
n
α (B))

) 1
q

.

In order to get the V MO condition, it just remains to prove that

lim
r→0

sup
x∈K

(
∑

k

‖gk‖q

L
n
α (B(x,r)))

) 1
q

= 0

on every compact set K ⊂ �. To do this, we fix r > 0 small enough, and observe that
the function x �→ ‖gk‖�q (L

n
α (B(x,r))

is continuous on the set {x ∈ � : d(x, ∂� > r)}, as
a uniformly converging series of continuous functions. As a consequence, there is a point
xr ∈ K (at least for small enough r > 0) such that

sup
x∈K

‖gk‖�q (L
n
α (B(x,r)))

= ‖gk‖�q (L
n
α (B(xr ,r)))

.

Now, from ‖gk‖L
n
α (B(x,r))

≤ ‖gk‖L
n
α (B(xr ,r))

and this belongs to �q , we can use dominated
convergence to say that

lim
r→0

‖gk‖�q (L
n
α (B(xr ,r)))

=
(

∑

k

lim
r→0

(ˆ
B(xr ,r)

g
n
α

k

) qα
n

) 1
q

.

Each of the limits on the term on the right hand side are equal to 0, since the points xr cannot
escape from the compact set K as r → 0. This finishes the proof.

We now prove Theorem 3.



428 A. L. Baisón et al.

Proof of Theorem 3 Given a test function ϕ ∈ C∞
c (�) such that supp τ−hϕ ⊂ �, we test

the equation with ϕ and τ−hϕ, and combine the resulting identities. We haveˆ
〈A(x + h,Du(x + h)) − A(x + h,Du), ∇ϕ〉 =

ˆ
〈�hG,∇ϕ〉 −

ˆ
〈A(x + h,Du(x)) − A(x,Du(x)),∇ϕ〉.

Now, by setting

Ah(x, ξ) = 1

|h|α
(
A(x + h, |h|α ξ + Du(x)) − A(x + h, Du)

)

and vh = �hu
|h|α , we immediately see that vh is a weak solution of

divAh(x,Dvh) = divGh (5.1)

where

Gh(x) = 1

|h|α �hG(x) − 1

|h|α (A(x + h,Du(x)) − A(x,Du(x))) (5.2)

As before, Ah still satisfies (A1), (A2), (A3) with same constants ν, L, � but now μ = 0.
We also note that, by virtue of (A4) and the assumption onG, we haveGh ∈ L

p
loc for almost

every h. Indeed, this is clear for the first term at Eq. 5.2, since by assumption G ∈ Bα
p,q,loc.

On the other hand, (A4) tells us that

∣∣∣∣
A(x + h,Du(x)) − A(x,Du(x))

|h|α
∣∣∣∣ ≤ (gk(x + h) + gk(x)) (μ2 + |Du(x)|2) 1

2 ,

if 2−k ≤ |h| < 2−k+1.

Above, gk ∈ L
n
α by assumption. Also, (1 + |Du(x)|2) 1

2 ∈ L
p∗

α

loc. To see this, use Lemma 6

with p < n
α
and q ≤ p∗

α to see that G ∈ L
p∗

α

loc, and deduce then that Du ∈ L
p∗

α

loc from
Theorem 5 (if p∗

α ≥ 2) or Lemma 14 (if p∗
α < 2 we still have p′

0 < p < p∗
α). Hence, we

obtain that Gh ∈ L
p
loc.

We can use now Lemma 14 at Eq. 5.1. If B is a ball with (2 + |h|)B ⊂ �,

‖Dvh‖Lp(B) ≤ C0

(
1

rB
‖vh‖Lp(2B) + ‖Gh‖Lp(2B)

)
, p′

0 < p < p0 (5.3)

where rB denotes the radius of B, p0 is as in Lemma 14, and the constant C0 =
C0(n, p, ν, L, s) does not depend on h. We now write the above inequality in terms of u,
and then take Lq norm with the measure dh

|h|n restricted to the ball B(0, R) on the h-space.
We obtain that

∥∥∥∥
�hDu

|h|α
∥∥∥∥

Lq( dh
|h|n ;Lp(B))

≤ C0

(
1

rB

∥∥∥∥
�hu

|h|α
∥∥∥∥

Lq( dh
|h|n ;Lp(2B))

+ ‖Gh‖Lq( dh
|h|n ;Lp(2B))

)
.

Above, the first term on the right hand side is finite, since Du ∈ L
p∗

α

loc. In order to estimate
the last term, we write

‖Gh‖Lq( dh
|h|n ;Lp(2B))

≤
∥∥∥∥
�hG

|h|α
∥∥∥∥

Lq( dh
|h|n ;Lp(2B))

+
∥∥∥∥
A(· + h, Du) − A(·,Du)

|h|α
∥∥∥∥

Lq( dh
|h|n ;Lp(2B))

Above, the first term on the right hand side is finite, since by assumption G ∈ Bα
p,q,loc.

Concerning the second term, denote rk = 2−k R. We write theLq norm in polar coordinates,
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so h ∈ B(0, R) if and only if h = rξ for some 0 ≤ r < R and some ξ in the unit sphere
Sn−1 on R

n. We denote by dσ(ξ) the surface measure on Sn−1. We bound the last term
above by

ˆ R

0

ˆ
Sn−1

∥∥∥∥
A(· + rξ,Du) − A(·,Du)

rα

∥∥∥∥
q

Lp(2B)

dσ (ξ)
dr

r

=
∞∑

k=0

ˆ rk

rk+1

ˆ
Sn−1

∥∥∥∥
A(· + rξ,Du) − A(·, Du)

rα

∥∥∥∥
q

Lp(2B)

dσ (ξ)
dr

r

≤ 2−αq
∞∑

k=0

ˆ rk

rk+1

ˆ
Sn−1

∥∥∥(τrξ gk + gk) (1 + |Du|2) 1
2

∥∥∥
q

Lp(2B)
dσ (ξ)

dr

r
.

Now, using again that Du ∈ L
p∗

α

loc,
∥∥∥(τrξ gk + gk) (1 + |Du|2) 1

2

∥∥∥
Lp(2B)

≤
∥∥∥(1 + |Du|2) 1

2

∥∥∥
L

np
n−αp (2B)

∥∥(τrξ gk + gk)
∥∥

L
n
α (2B)

On the other hand, we note that for each ξ ∈ Sn−1 and rk+1 ≤ r ≤ rk

‖(τrξ gk + gk)‖L
n
α (2B)

≤ ‖gk‖L
n
α (2B−rkξ)

+ ‖gk‖L
n
α (2B)

≤ 2‖gk‖L
n
α (λB)

where λ = 2 + R
rB
. Hence

∥∥∥∥
A(· + h, Du) − A(·, Du)

|h|α
∥∥∥∥

Lq( dh
|h|n ;Lp(2B))

≤ C(n, α, q)

∥∥∥(1 + |Du|2) 1
2

∥∥∥
Lp∗

α (2B)
‖{gk}k‖�q (L

n
α (λB))

where C(n, α, q) = 21−α log 2 σ(Sn−1)
1
q . Summarizing,

1

C0

∥∥∥∥
�hDu

|h|α
∥∥∥∥

Lq( dh
|h|n ;Lp(2B))

≤ 1

rB

∥∥∥∥
�hu

|h|α
∥∥∥∥

Lq( dh
|h|n ;Lp(2B))

+
∥∥∥∥
�hG

|h|α
∥∥∥∥

Lq( dh
|h|n ;Lp(2B))

+ C(n, α, q) ‖(1 + |Du|2) 1
2 ‖

Lp∗
α (2B)

‖{gk}k‖�q (L
n
α (λB))

Lemma 7 now guarantees that Du ∈ Bα
p,q,loc and this concludes the proof.

The proofs of Theorems 2 and 4 are almost the same.

Proof of Theorem 2 Arguing again as in the proof of Theorem 3, the fact that G = 0 now
tells us that q ≤ p∗

α is not needed to conclude that Gh ∈ L
p
loc for every single p < n

α
, due

to Theorem 5. As a consequence, Eq. 5.3 holds for every p < min{p0,
n
α
}. The rest of the

proof follows in the same way.

Proof of Theorem 4 Arguing again as in the Proof of Theorem 3, the new equation Ah is
now linear with V MO coefficients, due to the linearity ofA(x, ξ) as a function of ξ . Also,

from max{1, nq
n+αq

} < p < n
α
we have q ≤ p∗

α < ∞ and so G ∈ L
p∗

α

loc implies Du ∈ L
p∗

α

loc

by the results at [14]. Hence, Gh has an L
p
loc majorant, and thus Dvh ∈ L

p
loc again by [14],

since p > 1. In particular, the restriction p < min{p0,
n
α
} can be replaced by p < n

α
, and

the restriction p > p′
0 can be replaced by p > max{1, nq

n+αq
}. The rest of the proof follows

similarly.
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Nazionale di Alta Matematica (INdAM). Raffaella Giova has been partially supported by Project Legge
5/2007 Regione Campania “Spazi pesati ed applicazioni al calcolo delle variazioni” and by Università Degli
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