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1

EDUARDO HULETT †

Abstract. This paper deals with certain advances in the understanding of

the geometry of superconformal harmonic maps of Riemann surfaces into De

Sitter space Sn
1 . The character of these notes is mainly expository and we

made no attempt to provide complete proofs of the main results, which can

be found in reference [12]. Our main analytic tool to study superconformal

harmonic maps is a Gram-Schmidt algorithm to produce adapted frames

for such maps. This allows us to compute the normal curvatures and obtain

identities which are used to study their geometry. Some global properties such

as fullness and rigidity are considered and a highest order Gauss transform

or polar map is constructed and its main properties are discussed.

1. Introduction

The purpose of these notes is to present some recent advances on the geometry
of a class of harmonic maps of surfaces into De Sitter space Sn

1 , (n ≥ 3). As we
shall see these maps have many properties in common with their natural relatives:
the so-called superconformal harmonic maps of surfaces into Euclidean (round)
spheres Sn, introduced and studied by Bolton, Pedit and Woodward in [2] and
also by Miyaoka in [14].

The style of the paper is expository so that we have omitted the proofs of the
main results. The interested reader can consult reference [12] for details.

Let R
n+1
1 denote the flat Lorentz (n + 1)-space i.e. Rn+1 equipped with the

Lorentz inner product

〈x, y〉 =
n−1∑
j=0

xjyj − xnyn, x, y ∈ R
n+1. (1)
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The n-dimensional De Sitter space-time of radius c > 0 is by definition the pseu-
dosphere

S
n
1 (c) = {x ∈ R

n+1
1 : 〈x, x〉 = c2},

on which the ambient metric induces a metric also denoted by 〈 , 〉 of signature
(n − 1, 1), hence Sn

1 (c) is a Lorentz manifold of constant sectional curvature 1
c2 .

A smooth map f : M → Sn
1 (c) from a Riemann surface is harmonic if its tension

field vanishes on M : τ(f) ≡ 0 [7]. It is easily seen that f is harmonic if and only
if on any local complex coordinate in M the following PDE is satisfied by f :

∂∂̄f = −〈∂f, ∂̄f〉cf, (2)

where 〈 , 〉c denotes the complex bilinear extension of 〈 , 〉 to Cn+1 and

∂f =
1
2
(fx − ify), ∂̄f =

1
2
(fx + ify).

Note that equation (2) does not depend on a particular metric on M but only on
the conformal structure of M . This is characteristic of harmonic maps of Riemann
surfaces.

Let m ≥ 2 and n = 2m or n = 2m − 1 and f : M → Sn
1 (c) a smooth map from

a connected Riemann surface and assume that there is an integer r ≥ 1 such that

〈∂αf, ∂βf〉c = 0, 1 ≤ α + β ≤ 2r + 1, α, β positive integers,
〈∂r+1f, ∂r+1f〉c �≡ 0,

where ∂αf = ∂αf
∂zα . It is not difficult to show that such integer r is indepen-

dent of complex coordinates on M , so that it depends only on the map f itself.
It is called the isotropy dimension of f and is denoted by r(f). A smooth map
f : M → Sn

1 (c), (n ≥ 3) is called superconformal if r(f) = m−1, where m = [n+1
2 ].

Here we adapted the notion of isotropy dimension which F. Burstall introduced
in [5] to study harmonic maps of surfaces into Sn and CP

n.

Let f : M → Sn
1 (c) be a harmonic map with isotropy dimension r(f) ≥ 1.

Then equation (2) implies that the locally defined non-vanishing complex function
〈∂r+1f, ∂r+1f〉c is holomorphic, hence its zeros are isolated. Moreover the formal
expression

ϕr+1(f) := 〈∂r+1f, ∂r+1f〉Cdz2r+2,

is globally defined on M . It is called the (r + 1)-th complex Hopf differential of f .
We notice here that the topology of the Riemann surface M plays a role. In fact,
applying the Riemann-Roch Theorem [13], Ejiri in [8] shows that every space-like
harmonic map f : S2 → Sn

1 (c) is isotropic:

〈∂αf, ∂βf〉c = 0,
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ON THE GEOMETRY OF A CLASS OF CONFORMAL HARMONIC MAPS 25

for every pair of integers α, β ≥ 0 such that 1 ≤ α + β. This says that the
isotropy dimension of f is infinite. Then if f : M → Sn

1 (c) is harmonic with finite
isotropy dimension and M is compact, then genus(M) ≥ 1. Harmonic maps of
infinite isotropy dimension in Sn

1 (c) have been considered by Ejiri [8] and also by
Erdem [9].

It is well known that harmonic maps of surfaces into S
4
1(c) are related to Will-

more surfaces in R3 and S3. In fact harmonic maps (superconformal or not) of
surfaces in S

4
1(c) arise as images of the conformal Gauss map of immersed Willmore

surfaces in R3 and in S3 (see [1, 15]).
Also in [1] Aĺıas and Palmer considered space-like superconformal minimal sur-

faces into four dimensional Lorentz spaceforms and studied the behaviour of their
normal and Gaussian curvatures obtaining interesting results.

On the other hand Sakaki in [16] studied superconformal minimal space-like
surfaces in four dimensional Lorentz spaceform satisfying a generalized Ricci-
condition. Harmonic maps of surfaces with infinite isotropy dimension (also called
isotropic) into Sn

1 were considered by Ejiri [8]. Erdem in [9] obtained a classifica-
tion of harmonic isotropic maps of Riemann surfaces into S

n
1 with non-degenerate

osculating bundle.

The layout of the paper is as follows. Section 1 introduces the Gram-Schmidt al-
gorithm for the construction of harmonic sequences which give rise to the complex
line sub bundles Lj . In Section 2 we compute the normal curvatures of a super-
conformal harmonic map and derive the structural equations. Section 3 deals with
global rigidity and Section 4 is devoted to the construction and main properties
of the highest order Gauss transform or polar map.

2. Harmonic sequences

In what follows we shall consider only the class of superconformal harmonic maps
f : M → S

n
1 with n = 2m or n = 2m − 1 (m ≥ 2), i.e. those with maximal finite

isotropy dimension: r(f) = m − 1. Hence in particular f is a (weakly) conformal
map

〈∂f, ∂f〉c ≡ 0, (3)

At any point p ∈ M condition (3) above is equivalent to

‖dfp

(
∂

∂x

)
‖2 = ‖dfp

(
∂

∂y

)
‖2; 〈dfp

(
∂

∂x

)
, dfp

(
∂

∂y

)
〉 = 0.
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26 EDUARDO HULETT

Now since the ambient metric has signature (n−1, 1), for any p ∈ M such that dfp

is non-singular we have ‖dfp( ∂
∂x )‖2 = ‖dfp( ∂

∂y )‖2 > 0, so that f is a space-like map
i.e. the pull-back metric f∗〈 , 〉 is Riemannian at those points p ∈ M for which dfp

is non-singular.
Conversely, if M is an orientable surface and f : M → Sn

1 (c) is a space-like
immersion, then the pullback f∗〈 , 〉 is a Riemannian metric on M which deter-
mines a conformal or Riemann surface structure on M such that f is a conformal
immersion [13]. Hence if one considers on M the induced metric g = f∗〈 , 〉, then
f : M → S

n
1 (c) is an isometric space-like immersion.

Let us denote Sn
1 (1) = Sn

1 by simplicity. Now fix a local chart (U, z) ∈ M and
set

f0 := f, f1 := ∂f, fj+1 = ∂fj − 〈∂fj , fj〉
‖fj‖2

fj. (4)

Note that fj+1 is just the component of ∂fj orthogonal to fj . Moreover fj+1 is
defined away from the zeros of ‖fj‖2 which are called the higher order singularities
of f .

The following is our main technical result. It establishes the consistency of the
Gram-Schmidt process (4) and assures that the vectors fj have positive square
norms open densely in U . Its proof relies on the fact that harmonic maps of Rie-
mann surfaces into pseudospheres are real analytic maps, an essential observation
due to Ejiri [8]. For details, see [12], Section 3.

Lemma 1. [12] Let M be a connected Riemann surface and f : M → Sn
1 a

superconformal harmonic map, where n = 2m or n = 2m − 1, (m ≥ 2). On
any fixed complex chart (U, z) of M , formula (4) generates Cn+1-valued maps
f0, f1, f2, . . . , fm, defined on an open and dense subset of U satisfying the following
properties:

i) For each 1 ≤ j ≤ m− 1 the zeros of fj are isolated in U and ‖fj‖2 > 0 on an
open and dense subset of U .

ii) 〈fi, fj〉 = 0 for 0 ≤ i �= j ≤ m.
iii) 〈fi, fj〉c = 0 for 0 ≤ i, j ≤ m − 1.

By the above Lemma every superconformal harmonic map f : M → Sn
1 has

isolated higher-order singularities. Moreover it is space-like and df is non-singular
on an open and dense subset of M . In particular the induced metric g = f∗〈 , 〉
is a Riemannian metric on M with isolated singularities. Considering M with
the induced metric g then f : M → S

n
1 is a branched isometric minimal space-

like immersion. The globally defined complex differential Q(f) = ϕm(f)dz2m,
where ϕm(f) = 〈fm, fm〉c, measures the failure of fm and f̄m to be orthogonal. It
is called the Hopf differential of f and is an important invariant of f . If Q(f) ≡ 0
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ON THE GEOMETRY OF A CLASS OF CONFORMAL HARMONIC MAPS 27

the map f is called isotropic.
Let f0, f1, f2, . . . , fm be the finite sequence generated by (4) on U . Defining

f−j := (−1)j f̄j

‖fj‖2
, 1 ≤ j ≤ m, (5)

then a straightforward computation shows that the augmented sequence
{f−m, . . . , f−1, f0, f1, . . . , fm} satisfies the following formulae


fj+1 = ∂fj − ∂ log ‖fj‖2fj, −m ≤ j ≤ m − 1

∂̄fj = − ‖fj‖2

‖fj−1‖2 fj−1, −m + 1 ≤ j ≤ m

〈fi, fj〉 = 0, for 0 < |i − j| ≤ 2m − 1.

(6)

Also from (5) it follows that 〈fm, f−m〉 = (−1)m

‖fm‖2 ϕm, hence the extremes are or-
thogonal only at the zeros of the m-th Hopf differential.

Harmonic sequences were thoroughly studied by Bolton and Woodward in [4],
who considered harmonic maps of surfaces into complex projective spaces and
spheres.

2.1. The line bundles Lj. The (pseudo) hermitian inner product on Cn+1 is
defined by

〈z, w〉 = z0w̄0 + z1w̄1 + · · · + zn−1w̄n−1 − znw̄n. (7)

We denote by C
n+1
1 the complex vector space Cn+1 equipped with the (pseudo-

hermitian) inner product (7). Let C
2m+1
1 = C

2m+1
1 ×M → M be the trivial bundle

equipped with the canonical connection DXs = Xs where s is any smooth local
section of C

2m+1
1 and X ∈ TM . The map f determines a complex line subbundle

L0 = {(v, x) ∈ C
2m+1
1 : v ∈ Cf(x)},

equipped with the metric-compatible connection ∇L0 = πL0 ◦ D, where the pro-
jection π0 : C

2m+1
1 → L0 along L⊥

0 is well defined since 〈f, f〉 = 1. By the well
known Theorem of Koszul-Malgrange [7], ∇L0 determines a unique compatible
holomorphic structure on L0 such that a local smooth section s of L0 is holomor-
phic if and only if ∇′′

L0
s = 0, where ∇′′

L0
= πL0 ◦ ∂̄. Hence s is holomorphic if and

only if ∂̄s ∈ L⊥
0 . In particular by the harmonic map equation (2) f is a global

holomorphic section of L0. On the other hand the fibers of L0 determine a map
ϕ0 : M → CP

2m
1 by ϕ0(x) = Cf(x). Since ϕ0 is the composition of f followed by

the totally geodesic imbedding S2m
1 ↪→ CP

2m
1 , it results also harmonic.

In general a complex vector subbundle E ⊂ C
n+1
1 can be equipped with the

Koszul-Malgrange holomorphic structure provided it is non-degenerate respect to
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28 EDUARDO HULETT

the ambient hermitian indefinite inner product 〈 , 〉. That is, E ∩E⊥ = {0} fiber-
wise, where ⊥ denotes 〈 , 〉-orthogonal complement.

The bundle operator AL0 : TM ⊗ L0 → L⊥
0 given by AL0 = πL⊥

0
◦ D splits up

into its (0, 1) and (1, 0) parts A′
L0

= πL⊥
0
◦ ∂ and A′′

L0
= πL⊥

0
◦ ∂̄, according to

D = ∂ + ∂̄. It is shown in [11] that both operators are related by the identity

(A′
L0

)∗ = −A′′
L⊥

0
. (8)

Now since f is a harmonic map, A′
L0

takes holomorphic sections of L0 to holomor-
phic sections of L⊥

0 . This is equivalent to

A′
L0

◦ ∇′′
L0

= ∇′′
L⊥

0
◦ A′

L0
,

which also says that A′
L0

is a holomorphic section of Hom(L0, L
⊥
0 ) and by (8) A′′

L0

is antiholomorphic. Let L1 be the unique complex line sub bundle of C
2m+1
1 con-

taining the image of A′
L0

. Define L1 by continuity across the isolated zeros of A′
L0

,
hence L1 is a well defined non-degenerate complex line subbundle of C

2m+1
1 on

which the ambient metric 〈 , 〉 is positive definite by Lemma 1, i.e. L1 is a space-
like subbundle of C

2m+1
1 . In particular it has a well defined metric connection

∇L1 = πL1 ◦D and hence a unique compatible holomorphic structure. From (4) it
follows that A′

L0
sends holomorphic sections of L0 to holomorphic sections of L1,

in particular f1 = A′
L0

f0 is a local holomorphic section of L1. In the same way the
image of the operator AL1 = πL⊥

1
◦ D : L1 → L⊥

1 determines a unique space-like
(hence non-degenerate) complex line subbundle L2 ⊂ C

2m+1
1 . Thus it has also

a well-defined metric connection ∇L2 = πL2 ◦ D and hence a unique compatible
holomorphic structure. Also from (4) f2 = A′

L1
f1 is a local holomorphic section of

L2. The process continues producing a sequence of mutually orthogonal space-like
holomorphic complex line subbundles L1, L2, . . . , Lm−1,⊆ C

2m+1
1 where each Lj

has a well-defined metric connection ∇Lj = πLj ◦D and a compatible holomorphic
structure via the Koszul-Malgrange Theorem. However the last complex subbun-
dle Lm containing the image of A′

Lm−1
may degenerate at some points and its

signature may change.

The conjugate bundles L−j := L̄j 1 ≤ j ≤ m− 1 are also space-like. Including
the possibly degenerate subbundles L−m, Lm, then Lemma 1 and formulae (6)
imply that the whole sequence {Lj : −m ≤ j ≤ m} satisfies orthogonality relations

Li⊥Lj for 0 < |i − j| ≤ 2m − 1. (9)
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Also from (6) we conclude that A′
Lj

: Lj → Lj+1 defined by

A′
Lj

= πL⊥
j
◦ ∂,

satisfy A′
Lj

fj = fj+1. Hence for −m ≤ j ≤ m − 1 the bundle operators A′
Lj

:
Lj → Lj+1 are holomorphic, i.e. they send holomorphic sections to holomorphic
sections. This fact is expressed in an equivalently way by equation

A′
Lj

◦ ∇′′
Lj

= ∇′′
L⊥

j
◦ A′

Lj
,

which follows from (4) and the definition of A′
Lj

and ∇Lj . Also for −m+1 ≤ j ≤ m

the operators A′′
Lj

:= πL⊥
j
◦ ∂̄ : Lj → Lj−1 are anti-holomorphic bundle operators

as a consequence of the identity (A′
Lj

)∗ = −A′′
L⊥

j
(see [12], page 190, for details).

It is not difficult to show that the maps ϕj : M → CP
2m
1 defined by ϕj(x) = Lj(x)

are harmonic for −m + 1 ≤ j ≤ m − 1. The finite sequence of harmonic maps
ϕj : M → CP

2m
1 , −(m − 1) ≤ j ≤ m − 1 is called the harmonic sequence of the

initial superconformal harmonic map f : M → S2m
1 .

The curvature of Lj. The intrinsic curvatures of the complex line bundles Lj

are obtained using the Koszul-Malgrange holomorphic structure. In fact, we have

[∇′
Lj

, ∇′′
Lj

]fj = −∂̄∂ log ‖fj‖2 fj.

In the next section we shall see that the quantity −∂̄∂ log ‖fj‖2 is just a multiple
of the j-th normal curvature Kj by a factor depending on the induced metric g on
M .

3. Normal curvatures and Structure equations

We fix the induced metric g = f∗〈 , 〉 on M , hence the computations that follow
hold away from the isolated singularities g. Let ∇ be the pseudo-Riemannian
Levi-Civita connection of S2m

1 determined by the Lorentz metric and consider the
pull-back bundle

T = f∗(TS
2m
1 ) ⊂ R

2m+1
1 := R

2m+1
1 × M,

with the pull-back connection denoted also by ∇, and the pull-back Lorentz metric
〈 , 〉. The subspace of Tp generated by the ∇-derivatives of f up to order j at p ∈ M

is called the j-th osculating space at p and is denoted by T j
p . Then T 1

p = dfp(TM)
and T j

p is a subspace of T j+1
p . The orthogonal complement of T j

p in T j+1
p , denoted

by N j
p , is called the j-normal space at p. Thus

T j
p = T j−1

p ⊕ N j−1
p , 2 ≤ j ≤ m. (10)
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At generic points one can consider the j-th osculating bundle T j with 2j-dimen-
sional fibers T j

p , and also the j-th normal bundle N j with 2-dimensional fibers
N j

p . A point p is said to be generic if the fiber of T j over p coincides with the j-th
osculating space at p. It is known that the set of generic points is open and dense
in M (see [17]). The set of non-generic points, are nothing but the higher-order
singularities of f and consists of isolated points (cf. [6, 17]).

For 1 ≤ j ≤ m−1 the fibres of each complex line bundle Lj determined by f are
isotropic space-like complex lines in C

2m+1
1 . Hence each Lj, 1 ≤ j ≤ m − 1, may

be identified with an oriented real space-like 2-plane subbundle of R
2m+1
1 in the

following way: on a complex chart (U, z) ∈ M fj is a local holomorphic section of
Lj generated by (4). We define real vector fields F2j−1, F2j on U by setting

fj =
‖fj‖√

2
(F2j−1 − iF2j), 1 ≤ j ≤ m − 1. (11)

Then since 〈fj , fj〉c = 0, the fields are orthogonal 〈F2j−1, F2j〉 = 0 and of unit
norm ‖F2j−1‖2 = ‖F2j‖2 = 1. Thus, for j = 1, F1, F2 are local generating
sections of the first osculating bundle (or tangent bundle) T 1 = df(TM) of f ,
and for 2 ≤ j ≤ m − 1 F2j−1, F2j are local generating sections of the (j − 1)-th
normal bundle N j−1 of f . This exhibits the identification of L1 ≡ df(TM) and
of Lj ≡ N j−1 for 2 ≤ j ≤ m − 1. Consequently the (complex) maximal isotropic
space-like subbundle

L1 ⊕ L2 ⊕ · · · ⊕ Lm−1 ⊂ T C,

identifies with the (m − 1)-th osculating bundle T m−1 ⊂ T of f . Also from (11)
we have

df(TM)C = L̄1 ⊕ L1, (N j−1)C = L̄j ⊕ Lj , 2 ≤ j ≤ m − 1.

It follows from Lemma 1 and our discussion above that T m−1 is a real space-like
2(m − 1)-dimensional vector subbundle of T . Now if f is linearly full, we have
T m = T and by (10) the last normal bundle Nm−1 = (T m−1)⊥ of f is a real
non-degenerate oriented Lorentz 2-plane subbundle of T : i.e. the restriction of the
Lorentz metric to the fibers of Nm−1 has signature (1, 1). Then it is easily seen
that there are local generating sections F2m−1, F2m of Nm−1 satisfying

〈F2m−1, F2m〉 = 0, ‖F2m−1‖2 = −‖F2m‖2 = 1. (12)

In particular (Nm−1)C = L̄m ⊕ Lm and hence there are (local) complex functions
α, β such that

fm = αF2m−1 − βF2m, (13)
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so that Lm identifies with Nm−1. Note that the direct sum subbundle L2 ⊕ L3 ⊕
· · · ⊕ Lm identifies with the normal bundle of f

ν(f) = N1 ⊕ N2 ⊕ · · · ⊕ Nm−1,

and ∇ restricted to ν(f) coincides with the normal connection ∇⊥ on ν(f). Also
∇ restricted to T 1 coincides with the Levi-Civita Riemannian connection on M

determined by the induced metric g. The projection of ∇⊥ onto each normal 2-
plane subbundle N j−1 defines a metric-compatible connection ∇⊥

j−1, 2 ≤ j ≤ m

which is Riemannian for 2 ≤ j ≤ m − 1, whereas ∇⊥
m−1 is pseudo-Riemannian.

Let ωj = 〈∇⊥
j−1F2j , F2j−1〉 be the connection forms of T 1, N1, N2, . . . , Nm−1.

Then the equation dωj = KjdA defines the curvature function Kj , where

dA = 2‖f1‖2dx ∧ dy,

is the area element of the induced metric g respect to a local complex coordinate
z = x + iy (cf. [17]). It is shown in [12] that

Kj = −1
2
∆g log ‖fj‖2, for j = 1, . . . , m − 1, (14)

where

∆g = 2‖f1‖−2∂∂̄, (15)

is the Laplacian operator of the induced metric g = 2‖f1‖2dzdz̄ on M . Note that
K1 is just the Gauss curvature of the induced metric g. The expression of the last
normal curvature Km looks a little bit different

Km = 2‖f1‖−2.‖fm−1‖−2Im(α.β̄), (16)

where α, β are given by (13). See [12], page 194 for details.

3.1. Curvature identities and consequences. The compatibility or integra-
bility equations satisfied by the harmonic sequence of a superconformal harmonic
map f : M → S

2m
1 are ∂̄∂fj = ∂∂̄fj, 1 ≤ j ≤ m which as consequence of (4)

and (6) are given by

∂̄∂ log ‖fj‖2 =
‖fj+1‖2

‖fj‖2
− ‖fj‖2

‖fj−1‖2
.

In terms of the functions uj := log ‖fj‖, 1 ≤ j ≤ m − 1, σm := 〈∂F2m, F2m−1〉,
and α, β such that fm = αF2m−1 − βF2m, the compatibility equations above are
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32 EDUARDO HULETT

expressed by the following system of partial differential equations


2∂∂̄uj = e2(uj+1−uj) − e2(uj−uj−1), j = 1, . . . , m − 2,

2∂∂̄um−1 = (|α|2 − |β|2)e−2um−1 − e2(um−1−um−2),

Im(∂̄σm) = −e−2um−1 .Im(αβ̄),

∂̄α = σ̄mβ,

∂̄β = σ̄mα.

(17)

Using the expressions for K1, . . . , Km obtained before, and (15), we obtain the
normal curvatures in terms of uj and α, β:


Kj = e−2u1 [e2(uj−uj−1) − e2(uj+1−uj)] j = 1, . . . , m − 2,

Km−1 = e−2u1 [e2(um−1−um−2) − (|α|2 − |β|2)e−2um−1 ],

Km = 2e−2u1e−2um−1Im(αβ̄).
(18)

Hence the sum of the first m − 1 curvatures gives
Xm−1

j=1
Kj − 1 = −‖f1‖−2‖fm−1‖−2(|α|2 − |β|2). (19)

Note that from (19) the sign of
∑m−1

j=1 Kj − 1 depends on the sign of ‖fm‖2 =
|α|2 − |β|2.

On the other hand squaring (16) and adding (19) we obtain(
1 −

∑m−1

j=1
Kj

)2

+ K2
m = ‖f1‖−4‖fm−1‖−4|ϕm|2. (20)

Away from the zeros of the m-th Hopf differential Q = ϕm(f)dz2m we can take log
at both sides of (20) and since log |ϕm|2 is a local harmonic function, we obtain
the following identity

∆g log[(1 −
Xm−1

j=1
Kj)

2 + K2
m] = 4(K1 + Km−1). (21)

This identity generalizes a formula obtained by Aĺıas and Palmer in [1] and is
the key point to prove the following characterization of superconformal harmonic
maps of tori given in [12], which is a generalization of a Theorem by Sakaki in [16]

Theorem 1. ([12], Theorem 8.1) Let M be a compact connected Riemann sur-
face and f : M → S2m

1 a linearly full superconformal harmonic map having no
higher-order singularities. If the Gaussian and normal curvatures of f satisfy
(1 −∑m−1

j=1 Kj)2 + K2
m > 0 on M , then M is topologically a 2-torus.

Conversely, if M is a 2-torus then passing to the universal covering space C of
M it is possible to normalize ϕm ≡ 1 globally on M . Hence if the full superconfor-
mal harmonic map f : M → S2m

1 has no higher-order singularities, the inequality
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(1 −∑m−1
j=1 Kj)2 + K2

m > 0 holds on M as a consequence of (20).

Also as an application of identities (19) and (20) we obtain the following re-
sult which gives information on the global behaviour of a non-full superconformal
harmonic map f in terms of the normal curvatures

Theorem 2. ([12], Theorem 5.4) Let f : M → S2m
1 be a superconformal harmonic

map of a Riemann surface. Then Km ≡ 0 if and only if f(M) lies fully in a unique
non-degenerate hyperplane V . In this case
a)
∑m−1

j=1 Kj−1 ≥ 0 if and only if the induced metric on V has signature (2m−1, 1)
and f is superconformal harmonic full into S

2m−1
1 (V ).

b)
∑m−1

j=1 Kj − 1 ≤ 0 if and only if V is space-like and f is a superconformal
harmonic full into the Euclidean unit sphere S2m−1(V ) ⊂ V .
In both cases identity (20) implies that

∑m−1
j=1 Kj = 1 can occur only at the zeros

of Q which are isolated.

3.2. Toda affine equations and Toda frames. Away from the isolated zeros
of the m-th Hopf differential of f it is possible to find a local complex coordinate
(U, z) which normalizes ϕm, i.e. ϕm ≡ 1 on U (a proof of this fact is given in [2]).
In terms of α and β condition, ϕm = 〈fm, fm〉c ≡ 1 is just α2 − β2 = 1 on U , so
let ξ be a complex function defined on U such that α = cosh ξ and β = sinh ξ.
Introduce new local sections F ′

2m−1, F
′
2m of Nm−1 by

F ′
2m−1 = cosh(r)F2m−1 + sinh(r)F2m,

F ′
2m = sinh(r)F2m−1 + cosh(r)F2m,

(22)

where r = Re(ξ). It is easily seen that ‖F ′
2m−1‖2 = −‖F ′

2m‖2 = 1 and 〈F ′
2m−1, F

′
2m〉 =

0. In this new frame we have

fm = cos(θ)F ′
2m−1 + i sin(θ)F ′

2m,

so that α′ = cos(θ), β′ = −i sin(θ), where θ = Im(ξ). It follows that ‖fm‖2 =
cos2(θ) − sin2(θ) = cos(2θ). The fourth and fifth compatibility equations in (17)
yield ∂̄θ = iσm and hence ∂̄∂θ = −i∂̄σm. Also from the third equation of (17) we
get Im(∂̄σ) = − cos(θ) sin(θ)e−2um−1 , from which θ satisfies

2∂∂̄θ = − sin(2θ)e−2um−1 . (23)
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We have shown that in a local coordinate chart (U, z) where ϕm ≡ 1 it is possible
to find a local frame

F = (f, F1, F2, . . . , F2m−2, F
′
2m−1, F

′
2m),

fj = euj√
2
(F2j−1 − iF2j), 1 ≤ j ≤ m − 1

fm = cos(θ)F ′
2m−1 + i sin(θ)F ′

2m,

such that its compatibility equations ∂̄∂F = ∂∂̄F become the following system of
elliptic non-linear partial differential called Toda affine equations associated to the
pair (so(2m + 1, C), so(2m, 1))


2∂∂̄uj = e2(uj+1−uj) − e2(uj−uj−1), j = 1, . . . , m − 2,

2∂∂̄um−1 = cos(2θ)e−2um−1 − e2(um−1−um−2),

2∂∂̄θ = − sin(2θ)e−2um−1 .

(24)

Thus locally and away from the zeros of the m-th Hopf differential Q(f) = ϕmdz2m

the geometry of a superconformal harmonic map f is completely determined from
a solution of the above system. The frame F = (F1, F2, . . . , F2m−2, F

′
2m−1, F

′
2m)

considered above is called a Toda frame by Bolton Pedit and Woodward (cf. [2]).
Toda equations are well known examples of completely integrable systems. For a
survey on Toda equations and other soliton equations arising in geometry, see [10]
and the bibliography cited there.

In terms of θ the last normal curvature Km is given by

Km = sin(2θ)e−2(u1+um−1). (25)

Also from (19) we see that
Xm−1

j=1
Kj − 1 = −e−2(u1+um−1) cos(2θ). (26)

Thus at points where
∑m−1

j=1 Kj �= 1 (hence on an open and dense subset) we have

arctan

(
Km∑m−1

j=1 Kj − 1

)
= −2θ. (27)

Applying ∆g to both sides of (27) we get the following identity which generalizes
formula (3.1) of Aĺıas and Palmer in [1]

∆g arctan

(
Km∑m−1

j=1 Kj − 1

)
= 2Km. (28)

Integrating this identity respect to dA and using the Divergence Theorem we
obtain the following result

Rev. Un. Mat. Argentina, Vol 47-2



ON THE GEOMETRY OF A CLASS OF CONFORMAL HARMONIC MAPS 35

Theorem 3. ([12], Lemma 5.5) Let M be a compact connected Riemann sur-
face and f : M → S2m

1 a full superconformal harmonic immersion for which∑m−1
j=1 Kj �= 1 at each point of M . Then∫

M

KmdA = 0.

Note that under the hypothesis of Theorem 3, Km �≡ 0 so that Km must be a
signed function on M .

4. Rigidity

Here we consider the problem of determining invariants which determine a su-
perconformal harmonic map f : M → Sn

1 up to ambient isometries. We obtained
the following result which is analogous to that obtained in [4, 11] when the target
is Sn and Hn respectively

Theorem 4. ([12], Theorem 6.1) Let f, h : M → S2m
1 be superconformal harmonic

maps from a connected Riemann surface. If they induce the same metric on M

and have the same m-th Hopf differentials, then there is an isometry Φ of S2m
1

such that Φ ◦ f = h.

The construction of the isometry Φ uses the harmonic sequence of f which by
hypothesis coincides with that of g, and the Toda equations (24).

A manifestation of the complete integrability of the Toda system (24) describing
the geometry of a superconformal harmonic map f : M → Sn

1 is the fact that for
a simply connected M there is an associated S1-family fλ : M → Sn

1 , λ ∈ S1

of isometric deformations of the given f . The proof of the following Theorem
is consequence of a result by Bolton and Woodward in [4] when the target is
the Euclidean sphere Sn. For superconformal harmonic maps into Sn

1 , the proof
is analogous and uses the machinery of harmonic sequences which we developed
before.

Theorem 5. Let M be a simply connected Riemann surface and let f, f̃ : M →
S2m

1 be full superconformal harmonic maps inducing the same metric on M . If
Q(f) = λQ(f̃) for some function λ : M → S1, then λ is constant and f̃ is
congruent with some fλ of the family.

5. A higher order Gauss transform

According to Theorem 2 the image of a non-linearly full superconformal har-
monic map f : M → S2m

1 lies fully in a non-degenerate hyperplane V ⊂ R
2m+1
1
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which may be either space-like or have signature (2m − 1, 1). In this case the
sequence Lj generated by f is periodic:

L2m+j = Lj, ∀j ∈ Z, (29)

and the last line bundle of f is non-degenerate and satisfies Lm = L̄m = L−m.
Our discussion below needs the following result which also has an independent
interest

Proposition 1. ( [12], Proposition 4.2) Let f : M → S2m
1 be a superconformal

harmonic map. Then for every local complex chart on M the following inequality
holds

| ‖fm‖2| ≤ |ϕm|. (30)

If f is not full then its image f(M) lies fully in a non-degenerate hyperplane
V ⊂ R

2m+1
1 and equality holds in (30).

We are ready now to define the higher order Gauss transform or polar map of f

as follows. If the equality holds in (30) we have ‖fm‖2 = ±|ϕm|. Then according
to the signature of the metric induced on V we have:

(i) The hyperplane V is space-like and consequently ‖fm‖2 = |ϕm|. In particular
fm and

√
ϕm have the same order zeros so that one can extend the vector fm√

ϕm

across its singularities by continuity (cf. [14]). It can be easily checked that it is a
real vector and has square norm one. Moreover fm√

ϕm
is independent of coordinates

of M . The Gauss transform of f is well defined by

f∗ =
fm√
ϕm

: M → S
2m−1(V ) ⊂ V, (31)

where S2m−1(V ) = {x ∈ V : 〈x, x〉 = 1} is the unit sphere of V .
(ii) The induced metric on the hyperplane V has signature (2m − 1, 1) and so

it is isometric to R2m
1 . Here note that the square norm of fm is non-positive since

‖fm‖2 = −|ϕm|. Like in the previous case the vector fm√
ϕm

can be extended by
continuity across its singularities and does not depend on local coordinates in M .
However it is not a real vector since as consequence of f̄m = − ϕ̄m

|ϕm|fm we have,(
fm√
ϕm

)
= − ϕmfm

|ϕm|√ϕm
= −

√
ϕmfm√
ϕmϕm

= − fm√
ϕm

.

In this case defining f∗ = ±ifm√
ϕm

(i =
√−1), it follows that f∗ is a real vector with

square norm −1 lying in V which is independent of local coordinates of M . We
define the Gauss map of f in this case by

f∗ =
±ifm√

ϕm
: M → H

2m−1(V ) ⊂ V, (32)
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where the sign in (32) depends on a choice of the sheets of the hyperboloid {x ∈
V : 〈x, x〉 = −1} defining the hyperbolic space H2m−1(V ).

The main result of this section is the following

Theorem 6. ([12], Theorem 7.1) Let f : M → S
2m
1 be a non-full superconformal

harmonic map. If the image f(M) lies in a space-like hyperplane V ⊂ R
2m−1
1

then the Gauss transform f∗ = fm√
ϕm

: M → S2m−1(V ) is a full superconformal
harmonic map into the Euclidean unit sphere of V which has the same m-th Hopf
differential as f .

If f(M) lies in a (2m− 1, 1)-hyperplane V ⊂ R
2m+1
1 then the Gauss transform

f∗ = ±ifm√
ϕm

: M → H2m−1(V ) is a full superconformal harmonic map in the sense
of [11]. In this case the m-th Hopf differentials of f and f∗ have opposite signs.

Since there are no non-constant harmonic maps of compact surfaces into Hn we
obtain

Corollary 1. There exist no non-constant superconformal harmonic map of a
compact surface into odd-dimensional De Sitter space S

2m−1
1 (m ≥ 2).

Note that the simplest case m = 2 in the above Corollary is interesting since
a conformal minimal immersion f : M → S3

1 is superconformal if and only if its
umbilic points are isolated.

Corollary 2. There is no non-constant conformal minimal immersion of a com-
pact surface M into S3

1 with isolated umbilic points.

Other applications of higher order Gauss transforms of maps into S
2m−1
1 will

be discussed elsewhere.
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