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ABSTRACT

Let Ω ⊂ R
N be a bounded domain. We proof the existence of a bounded solution of

the Poisson’s equation −∆u = ∞ on Ω.

RESUMEN

Sea Ω ⊂ R
N un dominio acotado. Probamos la existencia de una solución acotada

para la ecuación de Poisson −∆u = ∞ en Ω.
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1 Introduction.

In [19] it is stated that

Le mouvement d’un corps libre consiste dans le mouvement de translation de son

centre de gravite et dans le changement de sa position autour de ce point. La recherche

du mouvument du centre de gravité se réduit à déterminer le mouvement d’un point

sollicité par des forces donnés; et, relativament aux corps célestes, ces forces sont le

résultat des attractions de spheroides dont la figure est supposée connu. Soient dm une

molécule d’un sphéroide; x ′, y ′, z ′ les trois coordennées orthogonales de cette molécule;

dm sera de la forme ξdx ′dy ′dz ′, ξ étant fontion de x ′, y ′, z ′. Soient encore x, y, z les

coordonnées d’un point attir’e, on aura

V =

∫
ξdx ′dy ′dz ′

√

(x ′ − x)2 + (y ′ − y)2 + (x ′ − y)2
(1)

cette intégrale étant prise relativementà toute l’étendue du sphéroide. Ses limites étant

indépendantes de x, y, z ainsi que les variables x ′, y ′, z ′, il est clair qu’en differential

l’expression de V par rapport àx, y, z il suffira, dans cette différentiation, d’avoir égard

au radical que renferme cette expression, et alors il est facile de voir que l’on a

0 =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂y2
. (2)

In modern interpretation of potential V of mass distributions, we have

V(x, y, z) =

∫

G

ξ(x ′, y ′, z ′)dx ′dy ′dz ′
√

(x ′ − x)2 + (y ′ − y)2 + (x ′ − y)2
. (3)

where ξ(x ′, y ′, z ′) is the density of a mass distribution in the space x ′, y ′, z ′. Then ∇V furnishes

the gravity field force and −∆V = 0 on R
3 −G.

In 1813 Poisson found that for a ball G the following equation is valid in the case of constant

density ξ(x, y, z ′) = ρ

−∆u = 4πρ on G Poisson’s equation.

Therefore a natural question is: there exists a solution for Poisson’s equation with ρ = ∞?. That

kind of solution will be related to gravity potential of bodies with infinite density or black holes.

The authors are not aware of a previous result deducing the existence of black holes using Newton

gravity theory or the gravity potential inside of a black hole. The equation

− ∆u = up, (4)

for p a nonnegative real number and u > 0in a Ball of radius R in R
3, with Dirichlet boundary

conditions was introduced by Lane [18] for modelling both the temperature and the density of
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mass on the surface of the sun. Today the problem (4) is named Lane-Emden-Fowler equation.

It was used first in the mid-19th century in the study of internal structure of stars mainly by

Chandrasekhar [4, 7, 9]. Singular Lane-Emden-Fowler equations (p < 0) has been considered in a

remarkable pioneering paper by Fulks and Maybe [10].

Eddigton [6] proposed the equation

− ∆u =
exp(2u)

1+ | x |2
in R

3, (5)

in order to represent the gravitational potential u of a globular cluster of stars.

Matukuma [20] introduced the equation

− ∆u =
ur

1+ | x |2
in R

3, (6)

where u is the gravity potential, ρ = (2π)−1(1+ | x |2)−1ur is the density and
∫
R3 ρdx is the total

mass to study the gravitational potential u of a globular cluster of stars. For the same problem

Hénon [15] suggested

− ∆u =| x |l ur in Ω ⊂ R
3. (7)

Black holes solutions means that the gravitational potential of the cluster behaves like 1
r
(r =| x |)

near the center.

Peebles [16, 17] gives for the first time a derivation of the steady state distribution of the star

near a massive collapsed object. The question of the existence of black hole in a globular cluster is

still open (1995). Core collapse does occur, for instance using Hubble Space Telescope, Bendinelli

et.al. [2] reported the first detection of a collapsed core globular cluster in M31.

On May 25, 1994 astronomers at NASA headquarters announced the Hubble Space Telescope

finding of a supermassive black hole in the heart of the giant galaxy M87, more than 50 million

light-years.

The equation

− ∆
1

| x− x0 |
= 4πδ(x− x0) in R

3,

has a deep insight because relate the formulation of the Laplace operator and the Dirac δ function

in a weak sense. The Laplace operator with point interaction in R
3 given by −∆+ αδ, α ∈ R has

been widely study for your applications in quantum physics (see for expample [11]) and in seismic

imaging [3].

Our purpose in this paper is to give a classical interpretation to the equation

− ∆u = ∞ in Ω ⊂ R
N. (8)

We define:
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Definition 1.1. The equation (8) has a classical solution if there exist two non decreasing sequences

of functions {uj}
∞

j=1 ∈ C(Ω) ∩ C2(Ω) and {fj}
∞

j=1 such that

−∆uj = fj in Ω,

and limj→∞ fj(x) = ∞ for all x ∈ Ω and limj→∞ uj(x) = u(x) < ∞ for all x ∈ Ω.

Our main result in this article is as follows.

Theorem 1.2. Let Ω be a bounded domain in R
N, N ≥ 3. Then the problem

−∆u = ∞ in Ω, (9)

has a non negative classical solution u.

Under the authors knowledge this is the first compactness result dealing with infinite on a non

trivial domain (see for example [21] first chapter: direct methods in the calculus of variations).

Similarly the theory of generalized functions not allow solutions to this kind of problem because

every distribution is locally a Newtonian potential:

Theorem 1.3. (page 277 [5]) Let Ω be an open set of RN, f ∈ D ′(Ω) and u a solution (in the

sense of distributions) of Poisson’s equation ∆u = f on Ω . Then for every bounded open set Ω1

with Ω1 ⊂ Ω there exists f1 ∈ E ′ the space of distributions on R
N with compact support, such that

f1 = f on Ω and u = the Newtonian potential of f1 on Ω1.

Moreover if we study this problem using a weak formulation in Sobolev’s spaces, the Georgi-

Nash-Moser theory cannot be used to derive any comparable compacity result [14].

We will use a non linear singular elliptic approach as in [1, 8, 13] to obtain the result.

Our strategy is study the auxiliary problem

−∆uǫ,m = gm(uǫ) in Ω,

uǫ,m = ǫ on ∂Ω,

where gm : (0,∞) → (0,∞), m = 1, . . .∞ is non increasing locally Hölder continuous function

singular at the origin with the properties gm(s) = g(s) for all s ≥ 1 and limm→∞ gm(s) = ∞

for all s ∈ (0, 1), m = 1, . . . ,∞ and g : (0,∞) → (0,∞) is strictly non increasing locally Hölder

continuous function singular at the origin.

Our result 1.2 is obtained letting limm→∞,ǫ→0+ uǫ,m. This limit by definition has not weak

derivatives of first or second order.
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2 Auxiliary results

Theorem 2.1 ([1]). Let Ω be a smooth bounded domain in R
N, N ≥ 3, g : (0,∞) → (0,∞) is

non increasing locally Hölder continuous function (that may be singular at the origin). Then the

problem

−∆uǫ = g(uǫ) in Ω,

uǫ = ǫ on ∂Ω,

has a unique positive solution u ∈ C(Ω) ∩ C2(Ω) for ǫ ≥ 0. Moreover uǫ2
≥ uǫ1

for ǫ2 ≥ ǫ1.

We consider the the auxiliary problem

−∆um = gm(um) in Ω,

um = 0 on ∂Ω,
(10)

Lemma 2.2. Let um be a solution of the equation (10). Then um+j ≥ um.

Proof. Suppose that there exists x0 ∈ Ω such that um(x0) > um+j(x0). Therefore for τ > 0 small

enough we have the inequality um(x0) > τ + um+j(x0). Then by continuity in Ω of the function

F(x) = um(x)−τ−um+j(x) there exist a non empty open set Ωτ such that F(x) > 0 for all x ∈ Ωτ

and F = 0 on ∂Ωτ. Using that um(x) > τ+ um+j(x) for all x ∈ Ωτ, we deduce

gm(um(x)) ≤ gm+j(um(x)) ≤ gm+j(τ+ um+j(x)) ≤ gm+j(um+j(x))

for all x ∈ Ωτ. Then

−∆um ≤ −∆(um+j + τ) in Ωτ,

um = um+j + τ on ∂Ωτ.

and we obtain um ≤ um+j + τ in Ωτ (Theorem 3.3 [14]) a contradiction.

Lemma 2.3. Let um be a solution of the equation (10). Then gm+j(um+j(x)) ≥ gm(um(x)).

Proof. Suppose that there exists x0 ∈ Ω such that gm(um(x0)) > gm+j(um+j(x0)). Then by

continuity in Ω of the function H(x) = gm(um(x)) − gm+j(um+j(x)), there exists Ω̂ ⊂ Ω such

that H(x) > 0 in Ω̂ and H(x) = 0 on ∂Ω̂

− ∆um ≥ −∆um+j in Ω̂,

um = um+j on ∂Ω̂.

We imply um ≥ um+j in Ω̂ (Theorem 3.3 [14]). Therefore gm(um(x)) ≤ gm(um+j(x)) ≤

gm+j(um+j(x)) for all x ∈ Ω̂. A contradiction.

Remark 2.4. In the proof of Lemmas 2.2 and 2.3 it is assumed only that gm is a non increasing

continuous function.
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3 Proof

Proof of Theorem 1.2. Let us consider the problem

−∆v = g(v) in Ω,

v = 0 on ∂Ω.

We introduce the equations

−∆e = g(e) in Ω,

e = 1 on ∂Ω.

−∆w = g(e) in Ω,

w = 0 on ∂Ω.

Using v ≤ e (see Lemma 2.3 and 2.6 in [1]), we infer

−∆w = g(e) ≤ g(v) = −∆v in Ω,

w = 0 = v on ∂Ω.

Then w ≤ v in Ω . Setting g0 = g and using the auxiliary results with the new sequence {gj}
∞

j=0,

we conclude that w ≤ um ≤ e for m = 1, . . .∞. Using Lemma 2.2, we infer the existence of

limm→∞ um(x) = u(x) for all x ∈ Ω. We restrict ourselves to the situation Ω = B1(0) where

B1(0) is the ball of radius 1 with center at 0. Applying the main result of [12] we infer that um is

a radial function with ∂um

∂r
< 0. Therefore u is also a radial non increasing function.

We proceed by contradiction, suppose that

lim
m→∞

gm(um(x)) < ∞ for all 0 ≤‖ x ‖< 1.

Our first implication is that the function u is strictly non increasing, because if exists (r1, r2) with

r2 < 1, and u(r1) = u(r2).

Then −∆u = 0 on the annulus A(r1, r2). Using Theorem 9.11 page 235 in [14], we deduce

‖ um ‖H2,p(Ω ′)≤ C(N,p,Ω ′, A(r1, r2))(‖ um ‖Lp(A(r1,r2)) + ‖ g(um) ‖Lp(A(r1,r2)))

≤ C(N,p,Ω ′, A(r1, r2))(‖ e ‖Lp(A(r1,r2)) + ‖ lim sup
m→∞

gm(um(r2)) ‖Lp(A(r1,r2))),

for all p > N, therefore by Sobolev’s embedding theorem (Theo. 7.26 [14]) we deduce ‖ um ‖C1,α(Ω ′)≤

C. We use a non negative test function ϕ with support contained in Ω ′:

0 =

∫

Ω ′

∇u · ∇ϕdx = lim
m→∞

∫

Ω ′

∇um · ∇ϕdx

=

∫

Ω ′

gm(um)ϕdx ≥

∫

Ω ′

g0(u0)ϕdx > 0.
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Contradiction, therefore we deduce that u is a strictly non increasing function. Moreover using

again estimates in Theorems 9.11 and 9.12 in [14] we have u ∈ C1,α
loc(B1(0)).

By assumption lim supr→1 u(r) ≥ 1, therefore u(r) > 1 for 0 ≤ r < 1. By construction there exists

0 < r0 < 1 such that g0(u0(r0)) > g0(1).

Using Lemma 2.3, we derive g0(u0(r0)) ≤ gm(um(r0)). But limm→∞ um(r0) = u(r0) > 1 and

therefore for m big enough um(r0) > 1. Moreover gm(um(r0)) = g0(um(r0)) < g0(1) because g0

is strictly non increasing.

Contradiction. It is follows that there exists 0 ≤ r1 < 1 such that

lim
m→∞

gm(um(r1)) = ∞.

Now, because um is a radial non increasing function, we infer that

gm(um(r1)) ≤ gm(um(r))

for all r1 < r < 1. So

lim
m→∞

gm(um(r)) = ∞ for all r1 ≤ r < 1.

Now for Ω a bounded domain in R
N, N ≥ 3 consider the transformation um(a+x

R
). This end the

proof.

Received: October 2012. Revised: February 2013.
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