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We deal here with the geometry of the so-called twistor fibration Z → S
3
1 over the

De Sitter 3-space, where the total space Z is a five-dimensional reductive homogeneous
space with two canonical invariant almost CR structures. Fixed the normal metric on Z
we study the harmonic map equation for smooth maps of Riemann surfaces into Z .
A characterization of spacelike surfaces with harmonic twistor lifts to Z is obtained. Also
it is shown that the harmonic map equation for twistor lifts can be formulated as the
curvature vanishing of an S

1-loop of connections i.e. harmonic twistor lifts exist within
S

1-families. Special harmonic maps such as holomorphic twistor lifts are also considered
and some remarks concerning (compact) vacua of the twistor energy are given.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

J. Eells and S. Salamon [9] were able to obtain conformal harmonic maps of Riemann surfaces into a 3-dimensional
Riemannian manifold N by projecting Cauchy–Riemann holomorphic maps with values in the unit tangent bundle T 1 N .
Replacing the Riemannian 3-manifold N by a Lorentzian 3-manifold L, it is then natural to look for analogous results. The
“unit” tangent bundle T 1L = {x ∈ T L: ‖x‖2 = ±1}, of a Lorentzian 3-manifold L splits into the disjoint union of the timelike
unit tangent bundle T 1−1 L = {x ∈ T L: ‖x‖2 = −1} and the spacelike unit tangent bundle T 1+1L = {x ∈ T L: ‖x‖2 = +1}. If L
comes equipped with a global notion of time orientedness, then any connected spacelike surface in L has a uniquely defined
future oriented timelike unit normal field n which may be viewed as a kind of Gauss lift of the surface to the subbundle
Z ⊂ T 1−1 L consisting of all future oriented timelike unit tangent vectors of L. We call Z the twistor bundle of the Lorentzian
3-manifold L, by analogy with the construction of hyperbolic twistor spaces due to D. Blair, J. Davidov and O. Muskarov [6].

Our goal in this paper is to give a detailed account of the geometry of the twistor bundle Z constructed over De Sitter
3-space or pseudosphere S

3
1. Also we intend to understand the geometry behind the harmonic map equation for maps from

Riemann surfaces into Z , when the normal metric is fixed on the target. In particular we characterize conformally immersed
(hence spacelike) surfaces in S

3
1 whose lifts are harmonic maps.

As a homogeneous manifold of the simple Lie group SOo(3,1) the twistor space Z is a (non-compact) reductive quotient
equipped with an invariant horizontal distribution h ⊂ T Z which is just the orthogonal complement with respect to the
normal metric to the vertical distribution of the principal bundle Z → G+

2 (R4
1), where the last is the Grassmann manifold
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of oriented spacelike subspaces of R
4
1. The distribution h ⊂ T Z supports two invariant almost complex structures which

arise from the natural complex structure on the fibers of Z → S
3
1 (diffeomorphic to the hyperbolic 2-space H

2), and the
almost complex structure naturally attached to every point of Z . These almost complex structures give rise to corresponding
CR structures on Z . Since the horizontal distribution h is contact, its integral manifolds have dimension at most two. In
fact, twistor lifts of conformally immersed Riemann surfaces provide examples of Legendrian manifolds (maximal integral
manifolds) of the distribution h. We consider the energy of smooth maps φ : M → Z determined by the normal metric
on Z . In this context we investigate those lifts which are critical points of the energy, i.e. which satisfy the harmonic map
equation. Our main result is Theorem 5.2 which gives a characterization conformally immersed surfaces in S

3
1 with harmonic

twistor lift. Also in Theorem 6.1 we show that the harmonic map equation for twistor lifts is a completely integrable system,
i.e. harmonic twistor lifts exist within S

1-families.
The paper is organized as follows. In the first section we derive the basic structure equations of conformally immersed

Riemann surfaces in S
3
1. The second section is devoted to study the geometry of the twistor fibration Z → S

3
1. We introduce

the horizontal distribution h ⊂ T Z and define two invariant almost complex structures J ′ , J ′′ on Z . In the third section we
derive the harmonic map equation for smooth maps of Riemann surfaces with values in Z in terms of the Maurer–Cartan
one form β of the reductive space Z . In Section 4 we characterize spacelike surfaces with harmonic twistor lifts. In Sec-
tion 5 we deal with one (complex) parameter deformations of harmonic twistor lifts. Although Z is not a symmetric space,
we show that the harmonic map equation for twistor lifts can be formulated as a loop of flat connections, a characteristic
property of integrable systems (see [4] for instance). We also consider special twistor lifts such as holomorphic ones. How-
ever, we have not dealt here with specific calculations using loop groups techniques to produce examples of harmonic lifts.
This will be considered in another paper. Finally in the last section we compute the energy of twistor lifts and establish a
relationship with the Willmore energy. Some remarks are given concerning compact vacua of the twistor energy.

2. Spacelike surfaces in SSS
3
1

Denote by R
4
1 the real 4-space R

4 with coordinates (x1, x2, x3, x4) equipped with the Lorentz metric

〈. , .〉 = dx2
1 + dx2

2 + dx2
3 − dx2

4.

De Sitter 3-space is defined as the unit sphere in R
4
1

S
3
1 = {

x ∈ R
4
1: 〈x, x〉 = 1

}
,

on which the ambient Lorentz metric induces a pseudometric 〈. , .〉 with signature (+ + −), and so it becomes a Lorentz
3-manifold with constant curvature one.

Let I3,1 = diag(1,1,1,−1), then the simple Lie group SOo(3,1) = {A ∈ Gl4(R): At I3,1 A = I3,1, a44 > 0} acts transitively
on S

3
1 by isometries. A global time orientation of S

3
1 is obtained by declaring a timelike vector X ∈ TxS

3
1 to be future-pointing

if 〈X, V x〉 < 0, where V is the unit timelike Killing vector field V on S
3
1 given by

V x = d

dt

∣∣∣∣
t=0

exp(t X0).x, x ∈ S
3
1,

and

X0 =
⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠ ∈ so(3,1).

It is easily seen that a timelike vector X ∈ TxS
3
1 is future pointing if and only if after parallel translation to the origin of R

4
1

it satisfies X4 > 0.
An immersion f : M → S

3
1 of a Riemann surface is conformal if 〈 f z, f z〉c = 0, for every local complex coordinate z = x+ iy

on M , where

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂ y

)
,

∂

∂ z̄
= 1

2

(
∂

∂x
+ i

∂

∂ y

)

are the complex partial derivatives and 〈 , 〉c is the complex bilinear extension of the Lorentz metric to C
4:

〈z, w〉c = z1 w1 + z2 w2 + z3 w3 − z4 w4.

Thus f is conformal if and only if on any local complex coordinate z = x + iy it satisfies

〈 fx, f y〉 = 0, ‖ fx‖2 = ‖ f y‖2. (1)



JID:DIFGEO AID:802 /FLA [m3G; v 1.45; Prn:10/08/2010; 16:31] P.3 (1-16)

E. Hulett / Differential Geometry and its Applications ••• (••••) •••–••• 3
In particular (1) implies that every conformal immersion f : M → S
3
1 is spacelike, i.e. the induced metric g = f ∗〈 , 〉 is

positive definite or Riemannian on M .
Let f : M → S

3
1 be a conformal immersion of a connected Riemann surface M and n : M → T S

3
1 a smooth future-pointing

unit timelike vector field along f which is normal to the immersed surface at each point. Such vector field exists by the time
orientation of S

3
1. We fix on M the induced Riemannian metric g = f ∗〈 , 〉 so that f : (M, g) → S

3
1 is a spacelike isometric

immersion. The 2nd Fundamental form of the space-like surface f : M → S
3
1 is given by

II = −〈df ,dn〉.
On any local chart (U , z = x + iy) of M we introduce a conformal parameter u defined by 〈∂ f , ∂ f 〉 = e2u , so that g|U =
2e2u(dx2 + dy2). The Mean curvature of f is defined by H = 1

2 trace II, which in terms of f and u is given by

H = −e−2u〈 f z̄z,n〉.
Since f is conformal we have

2〈 f z̄z, f z〉c = ∂

∂z
〈 f z, f z〉c = 0,

2〈 f z̄z, f z̄〉c = ∂

∂z
〈 f z̄, f z̄〉c = 0,

hence f z̄z has no tangential component. We obtain the structural equations of f :

f z̄z = −e2u f + e2u H .n, (i)

f zz = 2uz. f z + ξ.n, (ii)

nz = H . f z + e−2uξ. f z̄, (iii)

where q := ξ dz ⊗ dz = −〈 f zz,n〉c dz2 is the Hopf quadratic complex differential. Zeros of q are the umbilic points of M .
We say that f is isotropic or totally umbilic if and only if ξ ≡ 0. If H ≡ 0 then the conformal immersion f is harmonic or
maximal. In this case f satisfies

f z̄z = −〈 f z, f z̄〉c f , (2)

where 〈 f z, f z̄〉c = e2u . Away from umbilic points of f , from Eq. (ii) we obtain

n = 1

ξ
.(2uz fz − f zz), (3)

which allows us to recover the normal vector field from the immersion.
The compatibility conditions of the structure equations are the Gauss–Codazzi equations:

2uz̄z = (H2 − 1)e2u − |ξ |2e−2u (Gauss),

ξz̄ = e2u Hz (Codazzi).
(4)

Conversely, it is known that any solution of these equations defines a surface in S
3
1 up to an isometry. From Codazzi’s

equation a surface has contant mean curvature H if and only if ξ is holomorphic. Hence H = const and ξ �≡ 0, then the
umbilic points are isolated.

For a conformal immersion f : M → S
3
1, we consider the induced metric g = f ∗〈 , 〉 on M , hence f : (M, g) → S

3
1 is an

isometric space-like immersion. In terms of the conformal parameter u, the induced metric is given by g = 2e2u dz ⊗ dz̄,
and the Gaussian curvature of the surface (M, g) is just the curvature of the induced metric and is given by

K = −�g u = −2e−2uuz̄z,

where �g is the Laplace operator on M determined by g . In complex coordinates �g = 2e−2u ∂
∂ z̄

∂
∂z . Thus Gauss equation

becomes

K = 1 − H2 + |ξ |2e−4u. (5)

Here ‖q‖ = |ξ |2e−4u is the intrinsic norm of the Hopf differential. If λ1, λ2 are the principal curvatures of the immersed
surface, then it follows that

|ξ |2e−4u = 1

4
(λ1 − λ2)

2, (6)

so that Gauss equation reads

K + H2 − 1 = 1

4
(λ1 − λ2)

2. (7)
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3. The twistor bundle of SSS
3
1 and its geometry

By definition the fiber G v of the Gauss bundle G → S
3
1 over a point v ∈ S

3
1 is the totality of 2-planes passing through the

origin of T vS
3
1. If one is interested only in the geometry of spacelike surfaces in S

3
1, the Gauss bundle is too big. Restricting

the fibers of G by allowing only spacelike subspaces, one obtains a new bundle. We define the twistor bundle Z ⊂ G of S
3
1

by demanding that the fiber Zv over a point v ∈ S
3
1 be the set of spacelike 2-planes in T vS

3
1. A spacelike 2-plane V ⊂ T vS

3
1

has two timelike unit normal vectors of which only one is (according to our definition) future pointing and we choose it to
fix the desired orientation on V . Hence any V ∈ Zv determines and is determined by a unit timelike future pointing vector
w ∈ T vS

3
1 by requiring w⊥ = V ⊂ T vS

3
1. Translating w and V to the origin of R

4
1, they satisfy 〈w, w〉 = −1, 〈v, w〉 = 0 with

w4 > 0 and V = [v ∧ w]⊥ . Note that w defines a point in the upper half H
3+ of the hyperboloid {x ∈ R

4
1: 〈x, x〉 = −1}, which

is the unbounded realization of the three-dimensional real hyperbolic space. Hence the total space of the twistor bundle
of S

3
1 is just

Z = {
(v, w) ∈ S

3
1 × H

3+ ⊂ R
4
1 × R

4
1: 〈v, w〉 = 0

}
, (8)

where the projection map π : Z → S
3
1 is simply π(v, w) = v . The fiber Zv = π−1(v) over v ∈ S

3
1 identifies with v⊥ ∩ H

3+ ,
which is a copy of hyperbolic 2-space H

2 totally geodesic immersed in H
3+ , hence a complex manifold.

Note that a second fibration π ′′ : Z → H
3+ is obtained by projection on the second factor, π ′′ : (v, w) �→ w . It is clear

that the fiber of an element w ∈ H
3+ is the 2-sphere w⊥ ∩ S

3
1.

Remark 3.1. Any w ∈ Zv determines the oriented spacelike 2-plane V = [v ∧ w]⊥ ⊂ T vS
3
1 to which there is associated the

rotation J w : V → V of angle π
2 compatible with the orientation on V . So that identifying

w ↔ [v ∧ w]⊥ ↔ J w ,

we may think of Zv ≡ H
2 as the set of all oriented spacelike planes in T vS

3
1 and also, as the set of all oriented rotations in

T vS
3
1. One may view a section of Z as a field of rotations {v �→ J v}, or equivalently as a distribution D of oriented spacelike

2-planes in S
3
1.

Let M be a connected Riemann surface and f : M → S
3
1 a conformal immersion. It is not hard to show that there exists

a uniquely defined future-oriented unit normal vector field f̂ along f satisfying

f̂ (x) ∈ T f (x)S
3
1, f̂ (x)⊥dfx(TxM), ∀x ∈ M.

Thus the field f̂ determines a unique smooth map n : M → H
3+ such that

f̂ (x) = (
f (x),n(x)

) ∈ Z, x ∈ M. (9)

We call f̂ : M → Z the twistor lift of the conformal immersion f , and n : M → H
3
1 its normal Gauss map.

Since Z is a submanifold of R
4
1 × R

4
1, the tangent space of Z at (v, w) is given by

T(v,w)Z = {
(x, y) ∈ R

4
1 × R

4
1: 〈x, v〉 = 〈y, w〉 = 0, 〈x, w〉 + 〈v, y〉 = 0

}
.

Hence fixed the base point o = (e1, e4) ∈ Z then (x, y) ∈ To Z if and only if

x = (0, x2, x3, x4)
T , y = (x4, y2, y3,0)T .

Then we may identify

p := To Z � (x, y) ≡
⎛
⎜⎝

0 x2 x3 x4
−x2 0 0 y2
−x3 0 0 y3
x4 y2 y3 0

⎞
⎟⎠ ∈ so(3,1). (10)

On the other hand the transitive left action of SOo(3,1) on Z given by g.(v, w) = (g.v, g.w) allows to identify Z with
the quotient SOo(3,1)/K , where

K = {
diag(1, A,1), A ∈ SO(2)

}
, (11)

is the isotropy subgroup of the base point o ∈ Z .
Decompose so(3,1) = k ⊕ p, where
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k =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

0 0 0 0
0 0 −a 0
0 a 0 0
0 0 0 0

⎞
⎟⎠ , a ∈ R

⎫⎪⎬
⎪⎭ ,

is the Lie algebra of K � SO(2). Then the decomposition is reductive since p ≡ To Z defined above is Ad(K )-invariant. From
now on we choose the Ad(K )-invariant inner product 〈. , .〉 on p ≡ To Z defined by

〈A, B〉 = −1

2
trace(A.B), A, B ∈ p. (12)

Note that ‖A‖2 = x2 + y2 − c2 − z2 − w2, ∀A ∈ p, hence (12) gives rise to an SOo(3,1)-invariant pseudo-metric on Z of
signature (+ + − − −) denoted also by 〈. , .〉, the so-called normal metric. Since 〈. , .〉 is the restriction of (a multiple of)
the Killing form of so(3,1) to p × p, (Z, 〈. , .〉) is naturally reductive. In this case the natural projection SOo(3,1) → Z is a
(pseudo) Riemannian submersion, in which the bi-invariant (pseudo) metric induced by the Killing form is considered on
SOo(3,1). From now on we shall consider on Z only the normal metric.

Remark 3.2. Another remarkable SOo(3,1)-invariant metric is the one that makes the inclusion Z ⊂ R
4
1 × R

4
1 an isometric

immersion.

Given (v, w) ∈ Z the oriented space-like 2-plane V = [v ∧ w]⊥ defines a point of the Grassmannian G+
2 (R4

1) of all
oriented spacelike planes in R

4
1. Defining the projection map π ′ : Z → G+

2 (R4
1), by

π ′(v, w) = [v ∧ w]⊥,

we obtain an SOo(1,1)-principal bundle π ′ : Z → G+
2 (R4

1) where the right action of SOo(1,1) on the total space Z is given
by

(v, w).

(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
= (

cosh(t)v + sinh(t)w, sinh(t)v + cosh(t)w
)
. (13)

Pick a point V ∈ G+
2 (R4

1) and let {v, w} be an oriented basis of V ⊥ with ‖v‖2 = −‖w‖2 = 1, 〈v, w〉 = 0 and w4 > 0, so that
(v, w) ∈ Z and V = [v ∧ w]⊥ . Define the curve τ (t) = cosh(t)v + sinh(t)w ⊂ V ⊥ = [v ∧ w], then γ (t) = (τ (t), τ ′(t)) ∈ Z for
all t ∈ R and γ (0) = (v, w). We conclude that

π ′−1(V ) = {(
τ (t), τ̇ (t)

)
: t ∈ R

}
.

In other words (13) shows that the π ′-fibre through (v, w) ∈ Z is just the (right) orbit

(v, w).SOo(1,1) = {
(v, w).exp(t Z0): t ∈ R

}
, Z0 :=

(
0 1
1 0

)
∈ so(1,1).

Note that for any (v, w) ∈ Z we have

d

dt

∣∣∣∣
t=0

(v, w).exp(t Z0) = d

dt

∣∣∣∣
t=0

(
τ (t), τ̇ (t)

) = (w, v) ∈ T(v,w)Z.

This suggests defining the characteristic (or Hopf) vector field h on Z by

h(v,w) = (w, v) ∈ T(v,w)Z. (14)

Hence h is a unit timelike vector field, i.e. ‖h‖2 = −1 on Z . In this way π ′ : Z → G+
2 (R4

1) may be viewed as an analogous
the usual Hopf fibration S

3 → S
2.

Next we define the horizontal distribution h ⊂ T Z as the orthogonal complement with respect to the normal metric of
the vertical distribution namely,

h(v,w) = h⊥
(u,v) ⊂ T(v,w)Z, ∀(v, w) ∈ Z, (15)

thus h ⊂ T Z is the complementary subbundle of the fibres of π ′ and we decompose

T(v,w)Z = h(v,w)

⊥⊕ R(w, v), (16)

where Ker dπ ′
(v,w) = Rh(v,w) = R(w, v). It is not difficult to verify that h defines a connection on the principal bundle

SOo(1,1) → Z → G+
2 (R4

1). This is an example of sub-semi-Riemannian geometry in which the metric on the distribution h

is non-definite.
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Lemma 3.1. (See [10].) For every (v, w) ∈ Z the subspaces Ker dπ(v,w) and Ker dπ ′
(v,w) are orthogonal w.r.t. the normal metric (12).

From the preceding lemma and (16) it follows that Ker dπ(v,w) ⊂ h(v,w) . Thus we have the orthogonal decomposition

h(v,w) = Ker dπ(v,w)

⊥⊕ L(v,w), (17)

in which the subspace L(v,w) is the horizontal lift via dπ of the oriented spacelike 2-plane V = [v ∧ w]⊥ ⊂ T vS
3
1. Note that

the normal metric (12) restricted to h has signature (++) on L, and (−−) on Ker dπ . Hence the invariant metric on h is
neutral, i.e. has signature (+ + −−).

The geometry of the twistor space Z may be studied with the aid of the so-called Maurer–Cartan form β of Z introduced
by Burstall and Rawnsley in [7] of which we give a brief account.

Let g = so(3,1) and recall the reductive decomposition g = k ⊕ p. Consider the surjective application ξo : g � X �→
d
dt |t=0 exp(t X).o ∈ To Z . It follows that ξo has kernel k and restricts to an isomorphism p → To Z . Now form the associ-
ated vector bundle [p] := SOo(3,1) ×K p. Then the map

[
(g, X)

] �→ d

dt

∣∣∣∣
t=0

exp
(
t Ad(g)X

)
x = dτg

(
d

dt

∣∣∣∣
t=0

exp(t X).o

)
, x = g.o,

establishes an isomorphism of the associated bundle [p] and the tangent bundle T Z , where τg is the isometry of Z sending
g′.o to gg′.o.

Since p is an Ad(K )-invariant subspace of g, one has the inclusion [p] ⊂ [g] := Z × g, given by [p] � [(g, X)] �→
(g.o,Ad(g)X) ∈ [g]. Note that the fiber of [p] → Z over the point g.o identifies with {g.o} × Ad(g)p ⊂ [g]. This shows that
there exists an identification of T Z with a subbundle of the trivial bundle [g]. This inclusion may be viewed as an g-valued
one-form on Z which will be denoted by β . Note that every X ∈ g determines a flow on Z defined by ϕt(x) = exp(t X).x,
which is an isometry of Z for any t ∈ R. The vector field of the flow is then a Killing field denoted by X∗ which is given by

X∗
x = d

dt

∣∣∣∣
t=0

exp(t X)x, ∀x ∈ Z.

It is not difficult to show that

βx
(

X∗
x

) = Ad(g)
[

Ad
(

g−1)(X)
]
p
, ∀X ∈ p,

where x = g.o ∈ Z . In particular at o ∈ Z we have βo(X∗
o ) = X for any X ∈ p. From this formula it follows the equivariance

of β which is expressed by

β ◦ dτg = Ad(g)β, ∀g ∈ SOo(3,1). (18)

For x = g.o ∈ Z the application ξx : g → Tx Z such that X
ξx�−→ X∗

x , maps so(3,1) onto Tx Z , and restricts to an isomorphism
Ad(g)(p) → Tx Z whose inverse conicides with βx . Note that ξ satisfies dτg ◦ ξo(X) = ξg.o(Ad(g)X), which is equivalent
to (18). More details and properties of the one form β and proofs can be found in [7].

Now recall the definition of the horizontal distribution h ⊂ T Z given in (15). At the basepoint o = (e1, e4) ∈ Z the
subspace determined by the horizontal distribution identifies with

H =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

0 x y 0
−x 0 0 z
−y 0 0 w
0 z w 0

⎞
⎟⎠ , x, y, z, w ∈ R

⎫⎪⎬
⎪⎭ ⊂ p, (19)

which is an Ad(K )-invariant subspace of p.
The one-form β transfers the metric on the fibers of T Z , the horizontal distribution h to the fibers of [p]. From the

definition of β above we get

βg.o(hg.o) = Ad(g)H = [H]g.o, ∀g ∈ SOo(3,1). (20)

Thus β identifies the horizontal distribution h ⊂ T Z with the subbundle [H] ⊂ [p].

3.1. Invariant almost complex structures on h

Let L(v,w) ⊂ h(v,w) be the dπ -horizontal lift of the oriented spacelike 2-plane V = [v ∧ w]⊥ ⊂ T vS
3
1. Denote by J L

(v,w) :
L(v,w) → L(v,w) the dπ -horizontal lift of the positively oriented π

2 -rotation on the spacelike 2-plane V = [v ∧ w]⊥ .
On the other hand let J V

(v,w)
be the complex structure on the tangent space Ker dπ(v,w) of the fibre of v (recall that the

fibers of π : Z → S
3
1 are hyperbolic 2-spaces, hence complex manifolds). Both structures together yield an almost complex

structure J ′ on the distribution h = L ⊕ Ker dπ which is defined by
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J ′ =
{

J L, on L,

J V , on Ker dπ.
(21)

At the base point o = (e1, e4) it is possible to describe explicitly the action of J . In fact

Lo =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

0 x y 0
−x 0 0 0
−y 0 0 0
0 0 0 0

⎞
⎟⎠
⎫⎪⎬
⎪⎭ , Ker dπo =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

0 0 0 0
0 0 0 z
0 0 0 w
0 z w 0

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

On Lo the complex structure is obtained by lifting via dπ |o the oriented rotation on [e2 ∧ e3] = [e1 ∧ e4]⊥ ⊂ Te1 S
3
1 given by

e2 �→ e3, e3 �→ −e2.

The complex structure J V on the fibre

Ze1 = π−1(e1) ≡ H
2 ≡ SO(2,1)/SO(2)

is given at o ∈ Ze1 by

J V :
⎛
⎜⎝

0 0 0 0
0 0 0 z
0 0 0 w
0 z w 0

⎞
⎟⎠ �→

⎛
⎜⎝

0 0 0 0
0 0 0 −w
0 0 0 z
0 −w z 0

⎞
⎟⎠ .

According to the definition given before, the almost complex structure J ′ : H → H is given by

J ′

⎛
⎜⎝

0 x y 0
−x 0 0 z
−y 0 0 w
0 z w 0

⎞
⎟⎠ =

⎛
⎜⎝

0 −y x 0
y 0 0 −w

−x 0 0 z
0 −w z 0

⎞
⎟⎠ . (22)

The second almost complex structure J ′′ on h is obtained by reversing the complex structure on the fibers, namely

J ′′ =
{

J L, on L,

− J V , on Ker dπ.
(23)

The action of J ′′ on the subspace H ⊂ p is given by

J ′′

⎛
⎜⎝

0 x y 0
−x 0 0 z
−y 0 0 w
0 z w 0

⎞
⎟⎠ =

⎛
⎜⎝

0 −y x 0
y 0 0 w

−x 0 0 −z
0 w −z 0

⎞
⎟⎠ . (24)

We summarize our discussion above in the following

Lemma 3.2. Let J be either J ′ or J ′′ . Then J commute with {Ad(x)|H : x ∈ K } and is orthogonal, i.e.

〈 J X, J Y 〉 = 〈X, Y 〉, ∀X, Y ∈ H,

where J ∈ { J ′, J ′′}. Thus J ′ and J ′′ are SOo(3,1)-invariant almost complex structures on h = [H] ⊂ T Z .

As a consequence of a theorem by LeBrun it can be shown that the almost CR structure (h = [H], J ′) on Z is integrable
(see [11]).

4. Harmonic maps into Z

Here we study the harmonic map equation for smooth maps φ : M → Z from a Riemann surface into the twistor bundle,
on which we have fixed the normal metric 〈. , .〉. Let Ω ⊂ M be a relatively compact domain of M and define the twistor
energy of φ over Ω by

EΩ(φ) = 1

2

∫
Ω

‖dφ‖2 dA, (25)

where dA is the area form on M determined by a conformal metric g , and ‖dφ‖2 is the Hilbert–Schmidt norm of dφ defined
by ‖dφ‖2 = ∑

i〈dφ(ei),dφ(ei)〉 for any orthonormal frame {ei} on M . By definition φ is harmonic if it is an extreme of the
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energy functional φ �→ EΩ(φ) over all relatively compact subdomains Ω ⊂ M . Note that the energy may be negative since
the metric on Z is indefinite.

Let us denote by ∇ the Levi-Civita connection on Z determined by the normal metric, and by ∇φ the induced connection
on the pullback bundle φ−1T Z . By the formula of the first variation of the energy (see [8]) it follows that φ is harmonic
if and only if its tension vanishes: tr(∇dφ) = 0. If M is Riemann surface then φ is harmonic if and only if on every local
complex coordinate z on M the following equation holds

∇φ
∂
∂ z̄

dφ

(
∂

∂z

)
= 0, (26)

where the left hand of this equation is just a non-zero multiple of the tension field of φ.
For our purposes we need a reformulation of Eq. (26) in terms of the Maurer–Cartan form or Moment map β of Z ,

see [5,7].
Let D be the canonical connection of second kind, i.e. the affine connection on Z for which the parallel transport along the

curve t → exp(t X).x is realized by d exp(t X). Hence at the basepoint o ∈ Z we have

D X∗ Y ∗(o) = d

dt

∣∣∣∣
t=0

d exp(−t X)Y ∗ = [
X∗, Y ∗](o) = −[X, Y ]p. (27)

Note also that D is determined by the condition (D X∗ X∗)o = 0, ∀X ∈ p. Since ∇ �= D and D〈 , 〉 = 0, D has non-vanishing
torsion. From (27) we obtain

T D
o

(
X∗, Y ∗) = −[X, Y ]p, X, Y ∈ p. (28)

The following formula allows to compute D in terms of β and the Lie algebra structure of so(3,1).

Lemma 4.1. (See [7].)

β(D X Y ) = Xβ(Y ) − [
β(X),β(Y )

]
, X, Y ∈ X (Z). (29)

Let us now compute the Levi-Civita connection ∇ of the normal metric on Z . Since P : SOo(3,1) → Z is a (pseudo)
Riemannian submersion, P sends p-horizontal geodesics in SOo(3,1) onto ∇-geodesics in Z . Hence ∇X∗ X∗ = 0 for every
X ∈ p which implies ∇X∗ Y ∗ + ∇Y ∗ X∗ = 0, for any X, Y ∈ p. Now since ∇ is torsionless we get

∇X∗ Y ∗ = 1

2

[
X∗, Y ∗], ∀X, Y ∈ p. (30)

Hence at o ∈ Z we get

(∇X∗ Y ∗)(o) = −1

2
[X, Y ]p, ∀X, Y ∈ p. (31)

We are now ready to obtain a formula for the Levi-Civita connection ∇ on Z in terms of β namely,

Lemma 4.2.

β(∇X Y ) = Xβ(Y ) − [
β(X),β(Y )

] + 1

2
πp

([
β(X),β(Y )

])
, X, Y ∈ X (Z), (32)

where πp : Z × so(3,1) → SOo(3,1) ×K p ≡ T Z is the projection onto the tangent bundle of Z .

Proof. Let X∗, Y ∗ be Killing vector fields on Z determined by X, Y ∈ p.
From de definition of β , (27) and (31) we have

β
((∇X∗ Y ∗)(o)

) − β
((

D X∗ Y ∗)(o)
) = −1

2
[X, Y ]p + [X, Y ]p = 1

2
[X, Y ]p, ∀X, Y ∈ p.

On the other hand the difference tensor ∇ − D is SOo(3,1)-invariant, and so is β(∇ − D) = β(∇) − β(D) by formula (18).
Hence it is determined by its value at the point o ∈ Z . Thus formula (32) follows. �

Define the D-fundamental form of φ : M → Z by

D dφ(U , V ) = Dφ
U dφ(V ) − dφ

(∇M
U V

)
, U , V ∈ X (M), (33)

in which Dφ is the connection on φ−1T Z determined by D and ∇M is the Levi-Civita connection on M determined by a
conformal metric. The map φ : M → Z is called D-harmonic if and only if tr(D dφ) = 0 or equivalently

Dφ
∂
∂ z̄

dφ

(
∂

∂z

)
= 0.
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Lemma 4.3. φ : M → Z is harmonic if and only if

∂̄
(
φ∗β

)′ − [(
φ∗β

)′′ ∧ (
φ∗β

)′] = 0, (34)

where φ∗β = (φ∗β)′ + (φ∗β)′′ is the decomposition of the (complex) one form φ∗β into one forms of type (1,0) and (0,1).

Proof. It is consequence of the following formula for the tension of φ

−β

(
∇ ∂

∂ z̄
dφ

(
∂

∂z

))
dz ∧ dz̄ = ∂̄(φ∗β)′ − [

(φ∗β)′′ ∧ (φ∗β)′
]
. (35)

To obtain formula (35) we note first that from (32) we have β(tr ∇dφ) = β(tr D dφ) which since M is a Riemann surface is
equivalent to

β

(
∇φ

∂
∂ z̄

dφ

(
∂

∂z

))
= β

(
Dφ

∂
∂ z̄

dφ

(
∂

∂z

))
.

On the other hand from formula (29) we obtain

β

(
Dφ

∂
∂ z̄

dφ

(
∂

∂z

))
= ∂

∂ z̄
β dφ

(
∂

∂z

)
−

[
β dφ

(
∂

∂ z̄

)
, β dφ

(
∂

∂z

)]
, (36)

from which (35) follows. �
5. Harmonic twistor lifts

A natural question is to characterize those conformaly immersed surfaces f : M → S
3
1 whose twistor lift f̂ : M → Z is a

harmonic map.
Let f : M → S

3
1 be a conformal immersed surface and F ∈ SOo(3,1) be a frame of f which is adapted to the surface f ,

i.e. F is a locally defined map on an open subset U ⊂ M satisfying

f (x) = F1(x), F4(x) = n(x),

span
{

F2(x), F3(x)
} = dfx (TxM), ∀x ∈ U ,

where Fi = F .ei are the columns of the matrix F . From the structure equations (4) of the immersed spacelike surface f we
obtain the following evolution equations of the frame F

fz = eu

√
2
(F2 − i F3),

(F2)z = n − eu

√
2
. f − iuz F3 +

(
e−uξ + eu H√

2

)
.n,

(F3)z = i
eu

√
2
. f + iuz F2 + i

(
e−uξ − eu H√

2

)
.n,

nz =
(

e−uξ + eu H√
2

)
.F2 + i

(
e−uξ − eu H√

2

)
.F3. (37)

Written in matrix form these equations take the form

F z = F A, F z̄ = F B, (38)

where the complex matrices A, B = A are given by

A =

⎛
⎜⎜⎜⎜⎝

0 − eu√
2

i eu√
2

0

eu√
2

0 iuz
e−uξ+eu H√

2

−i eu√
2

−iuz 0 i( e−uξ−eu H√
2

)

0 e−uξ+eu H√
2

i( e−uξ−eu H√
2

) 0

⎞
⎟⎟⎟⎟⎠ , (39)

B =

⎛
⎜⎜⎜⎜⎜⎝

0 − eu√
2

−i eu√
2

0

eu√
2

0 −iuz̄
e−uξ+eu H√

2

i eu√
2

iuz̄ 0 −i( e−uξ−eu H√
2

)

0 e−uξ+eu H√ −i( e−uξ−eu H√ ) 0

⎞
⎟⎟⎟⎟⎟⎠

. (40)
2 2
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The pull-back α = F −1 dF of the Maurer–Cartan form of SOo(3,1) is given in terms of A, B by

α = A dz + B dz̄. (41)

Taking p and k projections we obtain α = αk + αp , with

αk = Ak dz + Bk dz̄, αp = Ap dz + Bp dz̄, (42)

in which

Ap =

⎛
⎜⎜⎜⎜⎝

0 − eu√
2

i eu√
2

0

eu√
2

0 0 e−uξ+eu H√
2

−i eu√
2

0 0 i( e−uξ−eu H√
2

)

0 e−uξ+eu H√
2

i( e−uξ−eu H√
2

) 0

⎞
⎟⎟⎟⎟⎠ , (43)

Bp =

⎛
⎜⎜⎜⎜⎜⎝

0 − eu√
2

−i eu√
2

0

eu√
2

0 0 e−uξ+eu H√
2

i eu√
2

0 0 −i( e−uξ−eu H√
2

)

0 e−uξ+eu H√
2

−i( e−uξ−eu H√
2

) 0

⎞
⎟⎟⎟⎟⎟⎠

, (44)

Ak =
⎛
⎜⎝

0 0 0 0
0 0 iuz 0
0 −iuz 0 0
0 0 0 0

⎞
⎟⎠ , Bk =

⎛
⎜⎝

0 0 0 0
0 0 −iuz̄ 0
0 iuz̄ 0 0
0 0 0 0

⎞
⎟⎠ . (45)

Also since M is a Riemann surface we decompose αp and αk into its (1,0) and (0,1) parts

αp = α′
p + α′′

p, αk = α′
k + α′′

k .

In terms of the above matrices we have

α′
k = Ak dz, α′′

k = Bk dz̄, α′
p = Ap dz, α′′

p = Bp dz̄. (46)

Note that the adapted frame F of f is also a frame of the twistor lift f̂ since F .o = (F1, F4) = ( f ,n) = f̂ , where o =
(e1, e4) ∈ Z is the fixed basepoint. From formula f̂ ∗β = Ad(F )αp we obtain

(
f̂ ∗β

)′ = Ad(F )α′
p,

(
f̂ ∗β

)′′ = Ad(F )α′′
p.

Now using the identity (see [4, p. 241])

d Ad(F ) = Ad(F ) ◦ ad α,

we compute

∂̄
(

f̂ ∗β
)′ = ∂̄

{
Ad(F )α′

p

} = Ad(F )
{
∂̄α′

p + [
αk ∧ α′

p

] + [
α′′

p ∧ α′
p

]}
. (47)

On the other hand

[(
f̂ ∗β

)′′ ∧ ( f̂ ∗β)′
] = Ad(F )

[
α′′

p ∧ α′
p

]
. (48)

Therefore

∂̄
(

f̂ ∗β
)′ − [(

f̂ ∗β
)′′ ∧ (

f̂ ∗β
)′] = Ad(F )

{
∂̄α′

p + [
αk ∧ α′

p

]}
.

Thus a direct consequence of Lemma 5 is

Proposition 5.1. Let f : M → S
3
1 be a conformal immersed surface and let f̂ : M → Z be its twistor lift. Then f̂ is a harmonic map if

and only if for every adapted frame F of f the so(3,1)-valued one form α = F −1 dF satisfies

∂̄α′
p + [

αk ∧ α′
p

] = 0. (49)
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A reformulation of (49) in terms of the evolution matrices A, B is easily obtained. Recall that α′
p = Ap dz and α′′

p = Bp dz̄,
hence

∂̄α′
p + [

αk ∧ α′
p

] = −
(

∂

∂ z̄
Ap + [Bk, Ap]

)
dz ∧ dz̄. (50)

Corollary 5.1. Let f : M → S
3
1 be a conformal immersion and let f̂ : M → Z be the twistor lift of f . Then f̂ is harmonic if and only if

for every adapted frame F of f the complex matrices A, B defined by α = F −1 dF = A dz + B dz̄ satisfy

∂

∂ z̄
Ap + [Bk, Ap] = 0. (51)

From the explicit form of the matrices Ap and Bk in (43) and (45) we conclude from Eq. (51) that f̂ is harmonic if and
only if

∂

∂ z̄

(
e−uξ + eu H

) + uz̄
(
e−uξ − eu H

) = 0,

∂

∂ z̄

(
e−uξ − eu H

) + uz̄
(
e−uξ + eu H

) = 0. (52)

Cancelling terms we are left with

e−uξz̄ + eu Hz̄ = 0,

e−uξz̄ − eu Hz̄ = 0. (53)

Combining with Codazzi’s equation ξz̄ = e2u Hz , system (53) is equivalent to

eu(Hz + Hz̄) = 0,

eu(Hz − Hz̄) = 0, (54)

hence Hx = H y = 0 and conversely. We have thus proved the following

Theorem 5.2. Let f : M → S
3
1 be a conformal (hence spacelike) immersion and let f̂ : M → Z be its twistor lift. Let 〈. , .〉 be the

normal metric on the twistor space Z . Then f̂ : M → (Z, 〈. , .〉) is a harmonic map if and only if the immersed surface f has constant
mean curvature.

By Codazzi’s equation f̂ is harmonic if and only if the Hopf complex differential q = ξ dz2 = −〈 f zz,n〉c dz ⊗ dz is holo-
morphic.

6. One parameter deformations

Here we show that harmonic twistor lifts exist within a family parameterized by the complex numbers of unit modulus.
Let f : M → S

3
1 a conformal immersion and F a (local) adapted frame of f , hence F is also a frame of f̂ . Let α = F −1 dF

be the pullback of the Maurer–Cartan form by F . According to the reductive decomposition so(3,1) = k ⊕ p we decompose
as before α = αk + αp where in terms of matrices Ap, Bp , Ak, Bk (43), (44) and (45) these forms are expressed by

αk = Ak dz + Bkdz̄, αp = Ap dz + Bpdz̄, α′
p = Ap dz, α′′

p = Bp dz̄.

On the other hand α satisfies the Maurer–Cartan equation dα + 1
2 [α ∧ α] = 0 which splits up into

∂̄α′
p + [

αk ∧ α′
p

] + ∂α′′
p + [

αk ∧ α′′
p

] + [
α′

p ∧ α′′
p

]
p

= 0,

dαk + 1

2

[
αk ∧ αk

] + [
α′

p ∧ α′′
p

]
k
= 0. (55)

We give below a further property of the geometry of our twistor lifts f̂ which is consequence of the form of the structure
equations of the immersion f which is reflected in the matrices Ap (43) and Ap = Bp (44).

Lemma 6.1. Let f : M → S
3
1 be a conformal immersion, F an arbitrary adapted frame of f , and z = x + iy a local complex coordinate

on M. Set F −1 F z = Ap + Ak and F −1 F z̄ = Bp + Bk , where the complex matrices Ap , Bp given by (43), (44). Then the one forms
α′

p = Ap dz and α′′
p = Bp dz̄ satisfy

[
α′

p ∧ α′′
p

]
p

= 0. (56)
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Proof. From the structure equations (37) of the immersion f we obtain 〈 f z,nz̄〉c = 〈 f z̄,nz〉c and 〈 ∂
∂z Fi − [ ∂

∂z Fi]T ,nz̄〉c = 0,
i = 2,3, where [ ∂

∂z Fi]T denotes the projection onto the tangent bundle of the immersed surface. These equations clearly
imply [Ap, Bp]p = 0. Hence

[
α′

p ∧ α′′
p

]
p

= [Ap, Bp]p dz ∧ dz̄ = 0. �
Assume now that f : M → S

3
1 has constant mean curvature. Thus f̂ is a harmonic map by Theorem 5.2, and so it satisfies

the harmonic map equation

0 = ∂̄α′
p + [

αk ∧ α′
p

] = −
(

∂

∂ z̄
Ap + [Bk, Ap]

)
dz ∧ dz̄.

Taking into account condition (56) the first equation in (55) reduces to

∂α′′
p + [

αk ∧ α′′
p

] = 0.

Hence the pair of Eqs. (55) become

(a) ∂α′′
p + [

αk ∧ α′′
p

] = 0,

(b) dαk + 1

2

[
αk ∧ αk

] + [
α′

p ∧ α′′
p

] = 0.

For λ ∈ C with |λ| = 1 set

λ.α = αλ = λ−1α′
p + αk + λα′′

p. (57)

Due to Ap = Bp and Ak = Bk , αλ is so(3,1)-valued for every λ ∈ S
1. Moreover λ.α = αλ defines an action of S

1 on so(3,1)-
valued 1-forms which leaves invariant the solution set of Eqs. (a) and (b) above. Comparing coefficients of λ it follows that
Eqs. (a) and (b) above hold for α if and only if αλ satisfies

dαλ + 1

2
[αλ ∧ αλ] = 0, ∀λ ∈ S

1.

This is the so-called zero curvature condition (ZCC) [4]. In this way the harmonic map equation for twistor lifts to Z is
encoded in a loop of “zero curvature” equations.

Now let us assume that the Riemann surface M is simply connected (otherwise we pass to its universal covering
space M̃), and fix a base point mo ∈ M . Then for each λ ∈ S

1 we can integrate and solve

dFλ = Fλαλ, Fλ(mo) = Id. (58)

The solution map Fλ = ( fλ, (Fλ)2, (Fλ)3,nλ) : M → SOo(3,1) is called an extended frame and satisfies

F −1
λ (Fλ)z = λ−1 Ap + Ak, F −1

λ (Fλ)z̄ = λBp + Bk, ∀λ ∈ S
1. (59)

Moreover since (αλ)p = λ−1α′
p + λα′′

p = (αλ)
′
p + (αλ)

′′
p , and (αλ)k = αk , then the one form αλ satisfies Eqs. (a) and (b) for

every λ ∈ S
1. Thus if P : SOo(3,1) → Z denotes the projection map P (g) = g.o, then φλ = P ◦ Fλ : M → Z is harmonic

∀λ ∈ S
1.

The family {φλ,λ ∈ S
1} is called the associated family of the harmonic map f̂ [7]. Note that φ{λ=1} = f̂ , hence each φλ is

a deformation of f̂ .
Let fλ = π ◦ φλ : M → S

3
1, hence from (59) we extract

( fλ)z = λ−1 eu

√
2

[
(Fλ)2 − i(Fλ)3

]
,

(nλ)z = λ−1
[(

e−uξ + eu H√
2

)
(Fλ)2 + i

(
e−uξ − eu H√

2

)
(Fλ)3

]
. (60)

From the first equation above we get

〈
( fλ)z, ( fλ)z

〉 = 〈
( fλ)z, ( fλ)z̄

〉c = e2u,

thus { fλ, λ ∈ S
1} is a family of conformal immersions into S

3
1, with a common conformal factor u, hence all fλ induce

the same metric for every λ ∈ S
1. Let Hλ be the mean curvature of fλ . Since u is the conformal parameter of fλ , we get

from (59),
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Hλ = −e−2u 〈( fλ)z̄z,nλ

〉 = e−2u 〈( fλ)z, (nλ)z
〉 = H, ∀λ ∈ S

1.

Thus Hλ does not depend on λ. On the other hand let qλ = ξλ dz ⊗dz be the Hopf complex differential of fλ . Then from (59)
and (60) we get

ξλ = −〈
( fλ)zz,nλ

〉c = 〈
( fλ)z, (nλ)z

〉c = λ−2ξ. (61)

Gauss equation for fλ reads

Kλ = 1 − H2 + |ξλ|2e−4u = 1 − H2 + |ξ |2e−4u = K . (62)

Hence all fλ : M → S
3
1 are isometric surfaces. Summing up we have proved the following

Theorem 6.1. Let f : M → S
3
1 be a conformal immersion with constant mean curvature H, Gaussian curvature K and Hopf complex

differential q = ξ dz ⊗ dz. Let f̂ : M → Z be its twistor lift. Then there is a one parameter family of harmonic maps φλ : M → Z ,
λ ∈ S

1 satisfying φ{λ=1} = f̂ , which are given by φλ = Fλ.o, where the extended frame Fλ : M → SOo(3,1) solves (58).
The projection fλ = π ◦ φλ : M → S

3
1 is an S

1-family of isometric conformally immersed surfaces satisfying f{λ=1} = f and

f̂λ = φλ , ∀λ ∈ S
1 . Moreover, the induced metric f ∗

λ 〈. , .〉 does not depend on λ and all fλ have constant mean curvature H, Gaussian
curvature K and Hopf complex differential qλ = λ−2ξ dz ⊗ dz.

Remark 6.1. Z is a reductive homogeneous space which is not symmetric since [p,p] �⊂ k. Thus the harmonic map equation
for arbitrary maps into Z cannot be encoded in a loop of connections with zero curvature. Nevertheless since twistor lifts
satisfy condition (56) the harmonic map equation for twistor lifts admits a formulation as the flatness condition (ZCC) of a
family of connections parameterized by unit complex numbers. This reflects the complete integrability of the harmonic map
equation for twistor lifts.

6.1. Holomorphic twistor lifts

Here we consider the behaviour of twistor lifts in relation to both invariant almost complex structures J ′, J ′′ on the
horizontal distribution h ⊂ Z introduced before. A smooth map φ : M → Z is said horizontal if dφ(Tx M) ⊂ hφ(x) for any
x ∈ M . From the structure of matrices (43) and (44) we conclude that twistor lifts are horizontal maps. Let J be one of
the almost complex structures J ′, J ′′ considered before. A horizontal map φ : M → Z is J -holomorphic if it satisfies a
Cauchy–Riemann type equation

J ◦ dφ = dφ ◦ J M , (63)

where J M is the complex structure of M . Equivalently φ is J -holomorphic if and only if dφ(T (1,0)M) ⊂ h
(1,0)
φ , where

h
(1,0)
q = {

X ∈ hC
q : J X = i X

}
.

Recall now that the isomorphism β : T Z → [p] constructed before satisfies (20), i.e.

βg.o(hg.o) = {g.o} × Ad(g)H, ∀g ∈ SOo(3,1).

Then a horizontal map φ : M → Z is J -holomorphic if and only if for every frame F of φ

φ∗β
(

∂

∂z

)
∈ Ad(F )H(1,0).

On the other hand for every frame F of φ the following identity holds

φ∗β
(

∂

∂z

)
= Ad(F )αp

(
∂

∂z

)
,

in which αp is the p-component of the Maurer–Cartan one form α = F −1 dF . We conclude that a horizontal map φ : M → Z
is J -holomorphic if and only if for every frame F of φ

αp

(
∂

∂z

)
∈ H(1,0).

From the explicit form of J ′ at o ∈ Z we see that the i-eigenspace H(1,0) corresponding to J ′ consists of matrices of the
form
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⎛
⎜⎝

0 a −ia 0
−a 0 0 b
ia 0 0 −ib
0 b −ib 0

⎞
⎟⎠ , a,b ∈ C.

Now let f : M → S
3
1 be a conformal (hence spacelike) immersed surface and f̂ : M → Z its twistor lift. Thus f̂ is

J -holomorphic if and only if αp( ∂
∂z ) ∈ H(1,0) for every adapted frame F of f . From (43) we have

αp

(
∂

∂z

)
= Ap =

⎛
⎜⎜⎜⎜⎝

0 − eu√
2

i eu√
2

0

eu√
2

0 0 e−uξ+eu H√
2

−i eu√
2

0 0 i( e−uξ−eu H√
2

)

0 e−uξ+eu H√
2

i( e−uξ−eu H√
2

) 0

⎞
⎟⎟⎟⎟⎠ ,

which is in the i-eigenspace H(1,0) of J ′ if and only if i(e−uξ − eu H) = −i(e−uξ + eu H), or 2e−uξ = 0, hence ξ = 0.
Arguing in an analogous way we conclude that a horizontal map φ : M → Z is J ′′-holomorphic if and only if for every

frame F of φ the complex matrix αp( ∂
∂z ) = Ap is an eigenvector of J ′′ corresponding to the eigenvalue i. Using the explicit

form of J ′′ (24) we see that X ∈ HC satisfies J ′′ X = i X if and only if

X =
⎛
⎜⎝

0 a −ia 0
−a 0 0 b
ia 0 0 ib
0 b ib 0

⎞
⎟⎠ , a,b ∈ C.

Turning to the particular case of the twistor lift f̂ of an immersed surface f , we see that f̂ is J ′′-holomorphic if and only
if J ′′ Ap = i Ap if and only if i(e−uξ − eu H) = i(e−uξ + eu H), or 2ieu H = 0.

One can also characterize twistor lifts which are conformal maps. For, let f : M → S
3
1 be a conformal immersion and take

an adapted (local) frame F of f . Thus f̂ ∗β( ∂
∂z ) = Ad(F )Ap , where the complex matrix Ap is given by (43). Since β preserves

the metric, we compute
〈

f̂∗
(

∂

∂z

)
, f̂∗

(
∂

∂z

)〉c

=
〈

f̂ ∗β
(

∂

∂z

)
, f̂ ∗β

(
∂

∂z

)〉c

= 〈
Ad(F )Ap,Ad(F )Ap

〉c = 〈Ap, Ap〉c = −1

2
tr(A2

p) = −2ξ H .

Thus f̂ is conformal if and only if it is J ′ or J ′′ holomorphic. We have thus obtained the following.

Proposition 6.1. Let f : M → S
3
1 be an immersed spacelike surface and let f̂ : M → Z its twistor lift. Then

i) f̂ is J ′-holomorphic if and only if f is totally umbilic (ξ ≡ 0).
ii) f̂ is J ′′-holomorphic if and only if f has vanishing mean curvature (H ≡ 0).

iii) f̂ is conformal if and only if f satisfies ξ.H = 0. In particular if f̂ is conformal, then it is harmonic.

Remark 6.2. As consequence of Theorem 5.2 and Codazzi’s equation, it follows that J ′ and J ′′-holomorphic twistor lifts f̂
are harmonic maps. Moreover from the proof of Theorem 6.1 it follows that the one parameter deformation introduced
preserves J ′- and J ′′-holomorphicity.

7. On the twistor energy

In order to gain some insight of the energy (25) we compute the twistor energy and study its behaviour for (compact)
genus zero and genus one spacelike surfaces.

Let f : M → S
3
1 be a conformal immersion, hence the energy density ‖d f̂ ‖2 of the twistor lift is by definition

‖d f̂ ‖2(p) = 〈
d f̂ (e1),d f̂ (e1)

〉 + 〈
d f̂ (e2),d f̂ (e2)

〉
,

where {e1, e2} is any orthonormal basis of T p M . To compute ‖d f̂ ‖2 we use the induced metric g = f ∗〈 , 〉 which is confor-
mal and locally given by g = 2e2u dz ⊗ dz̄, where u is the conformal factor. Thus

1

2
‖d f̂ ‖2 = e−2u〈 f̂ z, f̂ z̄〉c .

Now let F be a local adapted frame of f , thus a frame of f̂ too. Using identity f̂ ∗β = Ad(F )αp , and the complex matrix
Ap = [F −1 F z]p given by (43), with Bp = Ap , we obtain



JID:DIFGEO AID:802 /FLA [m3G; v 1.45; Prn:10/08/2010; 16:31] P.15 (1-16)

E. Hulett / Differential Geometry and its Applications ••• (••••) •••–••• 15
1

2
‖d f̂ ‖2 = e−2u〈 f̂ z, f̂ z̄〉c = e−2u

〈
f̂ ∗β

(
∂

∂z

)
, f̂ ∗β

(
∂

∂ z̄

)〉c

= e−2u〈Ap, Bp〉c = −e−2u 1

2
tr(Ap.Bp)

= e−2u(e2u(1 − H2) − e−2u|ξ |2) = 1 − H2 − e−4u|ξ |2. (64)

If λ1, λ2 are the principal curvatures of the immersed surface, it is easily seen that

e−4u|ξ |2 = 1

4
(λ1 − λ2)

2.

Therefore on a relatively compact domain Ω ⊂ M we obtain the following formula for the energy of f̂ ,

EΩ( f̂ ) =
∫
Ω

[
1 − H2 − 1

4
(λ1 − λ2)

2
]

dA, (65)

where dA is the area element of (M, g).
On the other hand if M is compact without boundary, the Willmore energy of the conformal immersion f : M → S

3
1 is

given by

W ( f ) =
∫
M

(
K + H2 − 1

)
dA = 1

4

∫
M

(λ1 − λ2)
2 dA. (66)

Combining (65) and (66) with Gauss equation (7) and the Gauss–Bonnet formula we obtain

Lemma 7.1. Let f : M → S
3
1 be a conformal immersion of a compact closed Riemann surface M. Then the total energy of f̂ over M and

the Willmore energy W ( f ) are related by the equality

2W ( f ) = 2π X (M) − E( f̂ ), (67)

where H and K are the mean curvature and the Gaussian curvature respectively of the immersed surface, and X (M) is the Euler–
Poincaré characteristic of M.

Since W ( f ) � 0 for every conformal immersion f , we deduce that

E( f̂ ) � 2π X (M). (68)

If f : M → S
3
1 has constant mean curvature H satisfying H2 < 1, Akutagawa [1] and independently Ramanathan [13]

proved that f (M) is a totally umbilic 2-sphere with constant Gaussian curvature K = 1 − H2 > 0. Thus W ( f ) = 0 and so
equality is attained in (68), namely E( f̂ ) = 4π . Thus there are no compact genus zero surfaces which are vacua of the
twistor energy.

On the other hand from (67) since X (T 2) = 0, we obtain E( f̂ ) � 0 for every conformal immersion f : T 2 → S
3
1 of the

two torus T 2 = S
1 × S

1. Thus the mean curvature function H of these immersions satisfies H2 � 1.
One may wonder if there are spacelike tori with zero twistor energy. Assume that f : T 2 → S

3
1 is a conformal immersion

with E( f̂ ) = 0, then its mean curvature should satisfy H2 = 1. Lifting f to the universal covering R
2 → T 2 = R

2/Γ we
obtain a double periodic (with respect to Γ ) conformal immersion f̃ : R

2 → S
3
1 such that f̃ (R2) = f (T 2). The corresponding

complex holomorphic function ξ̃ is entire and double-periodic, hence constant. If f is umbilic free, then ξ̃ never vanishes
and one can normalize (by a change of coordinate) so that ξ̃ = 1 on R

2 and so ξ = 1 on T 2. Thus the conformal immersion
f is free of umbilic points on the whole T 2, so that its principal curvatures never coincide on T 2. In particular Eq. (7)
becomes

K = 1

4
(λ1 − λ2)

2 > 0

on the whole T 2. Integrating this equation we have

0 = X
(
T 2) =

∫

T 2

K dA = W ( f ) > 0.

This shows that there is no genus one umbilic free spacelike surface in S
3
1 with zero-energy twistor lift. On the other hand

it is not difficult to rule out the existence of totally umbilic spacelike tori with H2 = 1, i.e. vacua of the twistor energy. Thus
the search of genus g > 1 compact spacelike vacua of the twistor energy seems to be an interesting problem.
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Remark 7.1. Conformally immersed umbilic free f : T 2 → S
3
1 with constant mean curvature H satisfying H2 > 1 are deter-

mined by double periodic solutions of Gauss equation (4) which normalized is the Sinh–Gordon equation:

uz̄z + sin h(u) = 0,

see [2,3,12].
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